[BZOJ3566][SHOI2014]概率充电器 换根树形DP
题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数
题解
设1为根节点
设 \(f[x]\) 表示 \(x\) 不从以 \(x\) 为根的子树中充电的概率 ,前提自己不充电,再乘上儿子不充电或者边不充电的概率,因此有
\]
这样进行第一次DP
再设 \(g[x]\) 表示 \(x\) 不充电的概率,他的前提是 \(f[x]\) 并且不从父亲上面充电。
如果从父亲上面充电,前提是父亲从父亲的父亲充电并且边也充电,用1减去这个概率就是不从父亲充电的概率
\]
据说这东西叫换根DP,反正就是两遍DP就是了
#include<bits/stdc++.h>
#define REP(i,a,b) for(int i(a);i<=(b);++i)
using namespace std;
typedef long long ll;
inline int read(){char c;int w;
while(!isdigit(c=getchar()));w=c&15;
while(isdigit(c=getchar()))w=w*10+(c&15);return w;
}
template<typename T,typename U>inline char smax(T&x,const U&y){return x<y?x=y,1:0;}
template<typename T,typename U>inline char smin(T&x,const U&y){return x>y?x=y,1:0;}
const int n=read(),N=5e5+5;
int head[N],tot;double w[N],f[N],g[N],ans;
struct node{int v,nxt;double w;}e[N<<1];
inline void add(int x,int y,double z){e[++tot].v=y,e[tot].w=z,e[tot].nxt=head[x];head[x]=tot;}
void go(int x,int fa){
f[x]=1-w[x];
for(int i=head[x];i;i=e[i].nxt){
const int&y=e[i].v;
if(y!=fa){
go(y,x);
f[x]*=1-(1-f[y])*e[i].w;
}
}
}
void dfs(int x,int fa){
ans+=1-g[x];
for(int i=head[x];i;i=e[i].nxt){
const int&y=e[i].v;
if(y!=fa){
if((1-(1-f[y])*e[i].w)>1e-8)g[y]=f[y]*(1-(1-g[x]/(1-(1-f[y])*e[i].w))*e[i].w);
else g[y]=f[y];
dfs(y,x);
}
}
}
int main(){
REP(i,2,n){
int x=read(),y=read();double z=read()/100.;
add(x,y,z),add(y,x,z);
}
REP(i,1,n)w[i]=read()/100.;ans=0;
go(1,0);g[1]=f[1];dfs(1,0);printf("%f\n",ans);
return 0;
}
[BZOJ3566][SHOI2014]概率充电器 换根树形DP的更多相关文章
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- BZOJ2591/LG3047 「USACO12FEB」Nearby Cows 换根树形DP
问题描述 BZOJ2591 LG3047 题解 换根树形DP. 设 \(opt[i][j]\) 代表 当 \(1\) 为根时,\(i\) 为根的子树中,到 \(i\) 的距离为 \(j\) 的权值和 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- [BZOJ3566][SHOI2014]概率充电器(概率DP)
题意:树上每个点有概率有电,每条边有概率导电,求每个点能被通到电的概率. 较为套路但不好想的概率DP. 树形DP肯定先只考虑子树,自然的想法是f[i]表示i在只考虑i子树时,能有电的概率,但发现无法转 ...
- Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】
传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
随机推荐
- django 笔记8 url模板 自定义函数 simple_tag
感谢alex老师~ 知识点: URL - 两个没见 url>路由系统> 函数或类 > 返回字符串 Form表单提交: 提交 >url>函数或类中的方法 -.. HttpR ...
- The in operator
The operators we have seen so far are all special characters like + and *, but there are a few opera ...
- Metasploit的三种启动方式
不多说,直接上干货! 注意:博主我用的是Kali linux 2016.2(Rolling). msfcli 的启动 root@kali:~# msfcli -h bash: msfcli: 未找到 ...
- sql的系统关键字的概述
create proc proc_B as SELECT * FROM [ZkbTest].[dbo].[T_ZKB] exec sp_helptext proc_B select * from sy ...
- 数据绑定的知识点<%%>,<%#%>,<%=%>
1.<% %>用来绑定后台代码 如: < % for(int i=0;i<100;i++) { Reaponse.Write(i.ToString()); } %> 2. ...
- Rman备份及不完全恢复操作
最后更新时间:2018/12/18 启用归档 --检查是否为归档 SQL> archive log list; Database log mode No Archive ...
- users---显示当前登录系统的所有用户的用户列表
users命令用于显示当前登录系统的所有用户的用户列表.每个显示的用户名对应一个登录会话.如果一个用户有不止一个登录会话,那他的用户名将显示相同的次数. 语法 users(选项) 选项 --help: ...
- 如何使用Java创建Excel(.xls 和 .xlsx)文件 并写入数据
1,需要依赖的jar包, <!-- POI(operate excel) start --> <!-- the version of the following POI packag ...
- PKU 2411 Mondriaan's Dream 状态DP
以前做过这题,今天又写了一次,突然发现写了一个好漂亮的DFS……(是不是太自恋了 - -#) 代码: #include <cstdio> #include <cstring> ...
- Unity C# 设计模式(五)建造者模式
定义: 将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 组成部分: 1.Builder:给出一个抽象接口,以规范产品对象的各个组成成分的建造.这个接口规定要实现复杂对象的哪 ...