codevs2606 约数和问题
Smart最近沉迷于对约数的研究中。
对于一个数X,函数f(X)表示X所有约数的和。例如:f(6)=1+2+3+6=12。对于一个X,Smart可以很快的算出f(X)。现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗?
输入文件仅一行,两个正整数X和Y(X<Y),表示需要计算f(X)+f(X+1)+……+f(Y)。
输出只有一行,为f(X)+f(X+1)+……+f(Y)的值。
2 4
14
对于20%的数据有1≤X<Y≤10^5。
对于60%的数据有1≤X<Y≤1*10^7。
对于100%的数据有1≤X<Y≤2*10^9。
正解:分块
解题报告:
据说是一道普及组题,我居然想了这么久,没戏了。
区间[l,r]的约数和之和,直接转端点相减。然后考虑答案肯定是ans=∑[n/i]*i(1<=i<=n); 但我们没有必要for一遍所有的i,可以把[n/i]相等的区间一起处理(分块处理),直接对这个区间求和就可以了。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
//ans=∑[n/i]*i(1<=i<=n); 按[n/i]分块处理 inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline LL solve(LL n){
if(n== || n==) return n;
LL left=,right; LL ans=;
while(left<=n) {
right=n/(n/left);//确定[n/i]为同一值的右端点
ans+=(n/left)*(left+right)*(right-left+)/;
left=right+;
}
return ans;
} inline void work(){
LL x,y; x=getint(); y=getint();
printf("%lld",solve(y)-solve(x-));
} int main()
{
work();
return ;
}
codevs2606 约数和问题的更多相关文章
- 约数和问题 (codevs2606 && 洛谷2424)
P2424 约数和 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f ...
- BZOJ 1968: [Ahoi2005]COMMON 约数研究
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2032 Solved: 1537[Submit] ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
- 【P1379】天才的约数和
来自GDOI2007,原题已不可考-- 又自己做出来了好开心,找特殊性是个关键的切入点 原题: 这天周航遇到了靳泽旭. 周航:"我是天才!" 靳泽旭:"你为什么是天才?& ...
- codevs 2606 约数和问题
题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...
- hdu5175 gcd 求约数
题意:求满足条件GCD(N,M) = N XOR M的M的个数 sol:和uva那题挺像的.若gcd(a,b)=a xor b=c,则b=a-c 暴力枚举N的所有约数K,令M=NxorK,再判断gcd ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- POJ 1845 (约数和+二分等比数列求和)
题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...
随机推荐
- Spring 中注入 properties 中的值
<bean id="ckcPlaceholderProperties" class="org.springframework.beans.factory.confi ...
- java 20 - 9 带有缓冲区的字节输出流和字节输入流
由之前字节输入的两个方式,我们可以发现,通过定义数组读取数组的方式比一个个字节读取的方式快得多. 所以,java就专门提供了带有缓冲区的字节类: 缓冲区类(高效类) 写数据:BufferedOutpu ...
- HTML5和css3的总结三
继续总结H5的新东西 1>序列化与反序列化 序列化:其实就是一个json->string的过程 JSON.stringify(json); 反序列化:string->json的过程( ...
- ng-bind的使用
由于JS是单线程的,当HTML页面执行alert的时候,会中断下面代码的运行,所以为了良好的用户体验,当需要在页面使用{{name}}的时候,通常不这样直接输出,而是用ng-bind绑定model数据 ...
- UICollectionView使用
本文原文 原文转自 1.1. Collection View 全家福: UICollectionView, UITableView, NSCollectionView n 不直接等效于NSColl ...
- BPM到底能做什么?K2为你解读
和平镇,镇如其名,几百年来一直很和平,夜不闭户路不拾遗.可是这一年来,镇上金光寺的和尚却开始不断离奇死亡…… 衙门里新调来的李捕头正好负责这个案子,经过了几个月的不眠不休,现场侦查和缜密推理之后,一切 ...
- C语言 结构体中的成员域偏移量
//C语言中结构体中的成员域偏移量 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> # ...
- 万向节死锁 gimbal lock
,如下图一,把灰色箭头想象成是一架飞机,红,绿蓝三个圈看作是三个外围控制器,外圈带动所有里圈运动,里圈的运动不影响外圈. 1,首先,绕Y轴旋转(旋转绿圈),来确定前进的方向.这时红圈与蓝圈都跟着旋转. ...
- matlab figure 窗口最大化
http://blog.163.com/yinhexiwen@126/blog/static/6404826620122942057214/ % figure 窗口最大化,坐标轴也随着窗口变大而相应变 ...
- Python-str函数
elp on class str in module __builtin__: 关于__builtin__模块中str类的帮助信息: class str(basestring) | str(obje ...