题目

给n个字母,构成长度为m的串,总共有n^m种。给p个字符串,问n^m种字符串中不包含(不是子串)这p个字符串的个数。

将p个不能包含的字符串建立AC自动机,每个结点用val值来标记以当前节点为后缀的字符串是否包含非法字符串(p个字符串中的任何一个)。

状态转移方程:f(i, j)  += f(i-1, k)

f(i, j)表示长度为i的字符串,结尾为字符j,方程j和k的关系可以从自动机中失配关系直接获得(j是k的后继结点)。

总之感觉是好东西,快存下来

大数模版:

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; struct BigInteger{
int A[];
enum{MOD = };
BigInteger(){memset(A, , sizeof(A)); A[]=;}
void set(int x){memset(A, , sizeof(A)); A[]=; A[]=x;}
void print(){
printf("%d", A[A[]]);
for (int i=A[]-; i>; i--){
if (A[i]==){printf(""); continue;}
for (int k=; k*A[i]<MOD; k*=) printf("");
printf("%d", A[i]);
}
printf("\n");
}
int& operator [] (int p) {return A[p];}
const int& operator [] (int p) const {return A[p];}
BigInteger operator + (const BigInteger& B){
BigInteger C;
C[]=max(A[], B[]);
for (int i=; i<=C[]; i++)
C[i]+=A[i]+B[i], C[i+]+=C[i]/MOD, C[i]%=MOD;
if (C[C[]+] > ) C[]++;
return C;
}
BigInteger operator * (const BigInteger& B){
BigInteger C;
C[]=A[]+B[];
for (int i=; i<=A[]; i++)
for (int j=; j<=B[]; j++){
C[i+j-]+=A[i]*B[j], C[i+j]+=C[i+j-]/MOD, C[i+j-]%=MOD;
}
if (C[C[]] == ) C[]--;
return C;
}
};
int main() {
BigInteger a, b;
a.set(); b.set();
(a+b).print(); return ;
}

本题答案(内含AC自动机模版):

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef unsigned char uchar; struct AC_Automata {
#define N 102
int ch[N][], val[N], last[N], f[N], sz;
void clear() { sz = ; memset(ch[], , sizeof(ch[])); } int hash[], M;
void set_hash(int n, uchar s[]) {
M = n; for (int i=; i<n; i++) hash[s[i]] = i;
}
void insert(uchar s[], int v) {
int u = ;
for (int i=; s[i]; i++) {
int c = hash[s[i]];
if (!ch[u][c]) {
memset(ch[sz], , sizeof(ch[sz]));
val[sz] = ;
ch[u][c] = sz++;
}
u = ch[u][c];
}
val[u] = v; //标记当前串为非法的
}
void build() {
queue<int> q;
f[] = ;
for (int c=; c<M; c++) {
int u = ch[][c];
if (u) { f[u] = last[u] = ; q.push(u); }
}
while (!q.empty()) {
int r = q.front(); q.pop();
for (int c=; c<M; c++) {
int u = ch[r][c];
val[r] = val[r] || val[f[r]]; //判断当前结点是否有非法后缀
if (!u) {
ch[r][c] = ch[f[r]][c];
continue;
}
q.push(u);
f[u] = ch[f[r]][c];
last[u] = val[f[u]] ? f[u] : last[f[u]];
}
}
}
} ac;
struct BigInteger{
int A[];
enum{MOD = };
BigInteger(){memset(A, , sizeof(A)); A[]=;}
void set(int x){memset(A, , sizeof(A)); A[]=; A[]=x;}
void print(){
printf("%d", A[A[]]);
for (int i=A[]-; i>; i--){
if (A[i]==){printf(""); continue;}
for (int k=; k*A[i]<MOD; k*=) printf("");
printf("%d", A[i]);
}
printf("\n");
}
int& operator [] (int p) {return A[p];}
const int& operator [] (int p) const {return A[p];}
BigInteger operator + (const BigInteger& B){
BigInteger C;
C[]=max(A[], B[]);
for (int i=; i<=C[]; i++)
C[i]+=A[i]+B[i], C[i+]+=C[i]/MOD, C[i]%=MOD;
if (C[C[]+] > ) C[]++;
return C;
}
BigInteger operator * (const BigInteger& B){
BigInteger C;
C[]=A[]+B[];
for (int i=; i<=A[]; i++)
for (int j=; j<=B[]; j++){
C[i+j-]+=A[i]*B[j], C[i+j]+=C[i+j-]/MOD, C[i+j-]%=MOD;
}
if (C[C[]] == ) C[]--;
return C;
}
};
int n, m, p;
uchar s[]; int main() { while (scanf("%d %d %d ", &n, &m, &p) == ) {
ac.clear();
cin >> s; ac.set_hash(n, s);
while (p--) {
cin >> s; ac.insert(s, );
}
ac.build(); BigInteger f[][];
f[][].set(); for (int i=; i<=m; i++)
for (int j=; j<ac.sz; j++)
for (int k=; k<n; k++) {
int u = ac.ch[j][k];
if (!ac.val[u]) f[i][u] = f[i][u] + f[i-][j];
}
BigInteger ans;
for (int i=; i<ac.sz; i++)
if (!ac.val[i]) ans = ans + f[m][i];
ans.print();
}
return ;
}

poj 1625 (AC自动机好模版,大数好模版)的更多相关文章

  1. Censored! POJ - 1625 AC自动机+大数DP

    题意: 给出一n种字符的字典,有p个禁用的单词, 问能组成多少个不同的长度为m的合法字符串.(m<=50) 题解: 是不是个我们之前做的题目非常非常像,题意都一样. 直接将上次写的AC自动机+矩 ...

  2. Censored! - POJ 1625(ac自动机+简单dp+高精度运算)

    题目大意:首先给一个字符集合,这个集合有N个字符,然后需要一个长度为M的句子,但是据子里面不能包含的串有P个,每个串里面的字符都是有字符集和里面的字符构成的,现在想知道最多能构造多少个不重复的句子. ...

  3. POJ 3691 (AC自动机+状态压缩DP)

    题目链接:  http://poj.org/problem?id=3691 题目大意:给定N个致病DNA片段以及一个最终DNA片段.问最终DNA片段最少修改多少个字符,使得不包含任一致病DNA. 解题 ...

  4. POJ 2778 (AC自动机+矩阵乘法)

    POJ 2778 DNA Sequence Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的 ...

  5. POJ 2896 AC自动机 or 暴力

    DESCRIPTION :大意是说.给你n个代表病毒的字符串.m个表示网站的字符串.让你计算有多少个网站被病毒感染了.被那些病毒感染了. 刚开始就想暴力.然而,忽略了条件:每个网站最多有三个病毒.于是 ...

  6. DNA Sequence POJ - 2778 AC自动机 && 矩阵快速幂

    It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to ...

  7. poj 4052(ac自动机)

    题意:自己百度吧!! 分析:就是通过它的fail指针来找出它的子串就行了,这题其实不难的.这好像还是金华邀请赛的题哦! 代码实现: #include<cstdio> #include< ...

  8. poj 2778 AC自动机+矩阵快速幂

    题目链接:https://vjudge.net/problem/POJ-2778 题意:输入n和m表示n个病毒,和一个长为m的字符串,里面只可以有'A','C','G','T' 这四个字符,现在问这个 ...

  9. DNA Sequence POJ - 2778 AC 自动机 矩阵乘法

    定义重载运算的时候一定要将矩阵初始化,因为这个调了一上午...... Code: #include<cstdio> #include<algorithm> #include&l ...

随机推荐

  1. 学习笔记 BIT(树状数组)

    痛定思痛,打算切割数据结构,于是乎直接一发BIT 树状数组能做的题目,线段树都可以解决 反之则不能,不过树状数组优势在于编码简单和速度更快 首先了解下树状数组: 树状数组是一种操作和修改时间复杂度都是 ...

  2. Spring POST

    Spring POST+表单对象如果数据格式不正确,则页面直接报400.页面没有反应,烦啊

  3. Jquery的初识

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. File类的创建,删除文件

    File.Create(@"C:\Users\shuai\Desktop\new.txt"); Console.WriteLine("创建成功"); Conso ...

  5. ECSHOP后台商品列表显示商品缩略图

    ECSHOP后台商品列表显示商品缩略图 ECSHOP教程/ ecshop教程网(www.ecshop119.com) 2013-11-06   ecshop 后台商品列表显示商品缩略图,大楷步凑如下: ...

  6. linux3

    第一课:date +%Y-%m-%d 显示日期date +%H:%M 显示小时分钟date 显示日期 vi /etc/sysconfig/network-scripts/ifcfg-eth0 网卡配置 ...

  7. Java及Android开发环境搭建

    前言 自从接触java以来,配置环境变量折腾了好几次,也几次被搞得晕头转向,后来常常是上网查阅相关资料才解决.但是过一段时间后一些细节就会记不清了,当要在其他机子上配置时又得上网查或者查阅相关书籍,如 ...

  8. Python socket编程之六:多窗口的应用

    import struct import sqlalchemy import pandas import matplotlib.pyplot as Plot from matplotlib.finan ...

  9. PHP函数之日期时间函数date()使用详解

    date()函数是我们在php开发中常碰到并且会使用到的一个日期函数,下面我来给大家介绍date()函数的一些基本扮靓和方法,有需要了解的朋友可进入参考   日期时间函数是PHP 的核心组成部分.无需 ...

  10. <转>错误 x error LNK1104: 无法打开文件“E:\xxxx\Debug\xxxx.exe”

    刚刚还好好的,怎么突然就出现这样的错误, 后来分析原因, 第一:查看那个exe文件是否存在, 第二:查看那个文件或者那个文件所在的文件夹是否打开或者改名字等等操作占用着这个文件. 第三:重新清理并生成 ...