一、原理

K均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小。

二、算法步骤

设迭代次数 r = 0

  1. 如果把数据分成k个类,则第一步选前k个点作为第一批聚类中心:Z1(r ),Z2(r )…Zk(r )
  2. 将所有的数据与各个聚类中心求距离(根据实际情况选择欧式、马氏等距离),然后将各数据点分配到离自己最近的聚类中心(相当于分类)。
  3. 对于分好的类,求每个类的重心,作为新的聚类中心。获得新一批的聚类中心Z1(r+1)、Z2(r+1)…Zk(r+1)
  4. 如果新一批的聚类中心与上一批的聚类中心完全相等,则停止迭代,否则重复步骤2~4

三、实例如下:

根据调查得到某地10所学校的数据(见下表),试采用k_means算法编写程序,将这些学校按三种类别聚类。

四、python代码实现:

import numpy as np

'''
k-means算法
''' #标签
label_set = [
'学校1','学校2','学校3','学校4','学校5',
'学校6','学校7','学校8','学校9','学校10'
]
#数据
data_set = np.array([
[2088,562.05,42,434],
[10344.8,4755,76,1279],
[2700,4100,56,820],
[3967,3751,67,990],
[5850.24,6173.25,78,1240],
[1803.26,5224.99,72,1180],
[2268,8011,56,800],
[32000,18000,200,2000],
[100000,30000,200,1100],
[173333,60000,420,2552]
]) #标准化
def normal_dataSet(data_set):
mean = np.mean(data_set,axis=0)
std = np.std(data_set,axis=0)
dataSet = (data_set-mean)/std
return dataSet #计算欧氏距离
def O_distance(x, y):
dis = np.sqrt(np.sum(np.square(x-y)))
return dis #第一步获取聚类中心(直接获取前k个作为中心)
def get_cluster_center(dataSet, k):
Z = []
for i in range(k):
Z.append(dataSet[i])
return np.array(Z) #根据离聚类中心Z的距离分类
def classify(dataSet, Z):
result = {}
for i in range(len(Z)):
result['第'+str(i+1)+'类'] = []
for j in range(len(dataSet)):
min_class = 0 #初始类
min_dis = O_distance(dataSet[j],Z[0]) #初始最小的距离
for i in range(len(Z)):
dis = O_distance(dataSet[j],Z[i])
min_dis = dis if dis < min_dis else min_dis
if(min_dis == dis):
min_class = i
result['第'+str(min_class+1)+'类'].append(j)
return result #获取新的聚类中心
def get_new_cluster_center(result,dataSet):
Z=[]
new_result = {}
#因为result保存的是各类别对应的各点在dataSet的下标
#需要将下标转化为dataSet中实际值
for key in result.keys():
new_result[key] = []
for index in result[key]:
new_result[key].append(dataSet[index])
avg = np.mean(np.array(new_result[key]),axis=0)
Z.append(avg)
return np.array(Z) #k_means算法,将数据集分成k份
def k_means(dataSet, k):
result = {} #分类结果
Z = get_cluster_center(dataSet, k) #初始的聚类中心
result = classify(dataSet, Z) #第一次分类 old_Z = Z
new_Z = get_new_cluster_center(result,dataSet) #获取新的聚类中心
#迭代
while ((old_Z!=new_Z).any()):
result = classify(dataSet, new_Z)
old_Z = new_Z.copy()
new_Z = get_new_cluster_center(result,dataSet)
return result # k_means(data_set_1,None,2) dataSet = normal_dataSet(data_set)#标准化处理
result = k_means(dataSet ,3)#分步聚类
#打印分类结果
for key in result.keys():
print(key,end=': ')
for index in result[key]:
print(label_set[index],end=' ')
print()

运行结果如下:

第1类: 学校1
第2类: 学校8 学校9 学校10
第3类: 学校2 学校3 学校4 学校5 学校6 学校7

k_means算法+python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. k_means算法的C++实现

    首先画出k_means算法的流程图:

  5. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  6. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. MySQL语句的使用

    进入数据库  mysql -u root -pmysql    (u用户名,p密码)#如果不想让其他人看到就直接一个p然后回车再打密码 select version();   查看数据库版本 sele ...

  2. skywalking7 源码解析 (3) :agent启动服务分析以及性能影响

    skywalking必看的文章,转载自https://blog.csdn.net/u010928589/article/details/106608864/

  3. JavaWeb网上图书商城完整项目--day02-15.登录功能流程分析

    当用户点击登录界面的登录按钮的时候,将登录的用户名.密码和验证码上传到后台,后台的业务流程如下面所示:

  4. npm -v 报错:Error: EPERM: operation not permitted, mkdir 'C:\soft\nodejs'

    npm -v 报错:Error: EPERM: operation not permitted, mkdir 'C:\soft\nodejs' 起因:原本安装node在C盘soft文件夹下,按node ...

  5. Java设计模式十九——责任链模式

    责任链模式 老李的苦恼 每个人在出生的时候,都早已在暗中被标好了三六九等. 老李是一名建筑工地的木匠,和大多数生活在社会最底层的农民工一样,一辈子老实本分,胆小怕事.在他们的心中,谁当老爷都没有区别, ...

  6. SpringBoot中VO,DTO,DO,PO的概念、区别和用处

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/zhuguang10/article/de ...

  7. C# Thread、lock

    class Program { private static readonly object obj = new object(); static void Main(string[] args) { ...

  8. QtableWidget用法流程

    QtableWidget用法流程 ​ 作者:流火 日期:2020/5/10 QTableWidget的基本构造函数 QTableWidget 是QTableview的子类.主要去呗是QTableVie ...

  9. 每日一题 - 剑指 Offer 45. 把数组排成最小的数

    题目信息 时间: 2019-07-01 题目链接:Leetcode tag: 快速排序 难易程度:中等 题目描述: 输入一个非负整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最 ...

  10. css重设样式_清除浏览器的默认样式

    由于不同的浏览器默认的样式也不同,所以在网页开发前设置一个公用样式,来清除各个浏览器的默认样式,已达到做的网页在各个浏览器中达到统一. 收集的默认样式的链接地址: 1.eric-meyer-reset ...