一、原理

K均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小。

二、算法步骤

设迭代次数 r = 0

  1. 如果把数据分成k个类,则第一步选前k个点作为第一批聚类中心:Z1(r ),Z2(r )…Zk(r )
  2. 将所有的数据与各个聚类中心求距离(根据实际情况选择欧式、马氏等距离),然后将各数据点分配到离自己最近的聚类中心(相当于分类)。
  3. 对于分好的类,求每个类的重心,作为新的聚类中心。获得新一批的聚类中心Z1(r+1)、Z2(r+1)…Zk(r+1)
  4. 如果新一批的聚类中心与上一批的聚类中心完全相等,则停止迭代,否则重复步骤2~4

三、实例如下:

根据调查得到某地10所学校的数据(见下表),试采用k_means算法编写程序,将这些学校按三种类别聚类。

四、python代码实现:

import numpy as np

'''
k-means算法
''' #标签
label_set = [
'学校1','学校2','学校3','学校4','学校5',
'学校6','学校7','学校8','学校9','学校10'
]
#数据
data_set = np.array([
[2088,562.05,42,434],
[10344.8,4755,76,1279],
[2700,4100,56,820],
[3967,3751,67,990],
[5850.24,6173.25,78,1240],
[1803.26,5224.99,72,1180],
[2268,8011,56,800],
[32000,18000,200,2000],
[100000,30000,200,1100],
[173333,60000,420,2552]
]) #标准化
def normal_dataSet(data_set):
mean = np.mean(data_set,axis=0)
std = np.std(data_set,axis=0)
dataSet = (data_set-mean)/std
return dataSet #计算欧氏距离
def O_distance(x, y):
dis = np.sqrt(np.sum(np.square(x-y)))
return dis #第一步获取聚类中心(直接获取前k个作为中心)
def get_cluster_center(dataSet, k):
Z = []
for i in range(k):
Z.append(dataSet[i])
return np.array(Z) #根据离聚类中心Z的距离分类
def classify(dataSet, Z):
result = {}
for i in range(len(Z)):
result['第'+str(i+1)+'类'] = []
for j in range(len(dataSet)):
min_class = 0 #初始类
min_dis = O_distance(dataSet[j],Z[0]) #初始最小的距离
for i in range(len(Z)):
dis = O_distance(dataSet[j],Z[i])
min_dis = dis if dis < min_dis else min_dis
if(min_dis == dis):
min_class = i
result['第'+str(min_class+1)+'类'].append(j)
return result #获取新的聚类中心
def get_new_cluster_center(result,dataSet):
Z=[]
new_result = {}
#因为result保存的是各类别对应的各点在dataSet的下标
#需要将下标转化为dataSet中实际值
for key in result.keys():
new_result[key] = []
for index in result[key]:
new_result[key].append(dataSet[index])
avg = np.mean(np.array(new_result[key]),axis=0)
Z.append(avg)
return np.array(Z) #k_means算法,将数据集分成k份
def k_means(dataSet, k):
result = {} #分类结果
Z = get_cluster_center(dataSet, k) #初始的聚类中心
result = classify(dataSet, Z) #第一次分类 old_Z = Z
new_Z = get_new_cluster_center(result,dataSet) #获取新的聚类中心
#迭代
while ((old_Z!=new_Z).any()):
result = classify(dataSet, new_Z)
old_Z = new_Z.copy()
new_Z = get_new_cluster_center(result,dataSet)
return result # k_means(data_set_1,None,2) dataSet = normal_dataSet(data_set)#标准化处理
result = k_means(dataSet ,3)#分步聚类
#打印分类结果
for key in result.keys():
print(key,end=': ')
for index in result[key]:
print(label_set[index],end=' ')
print()

运行结果如下:

第1类: 学校1
第2类: 学校8 学校9 学校10
第3类: 学校2 学校3 学校4 学校5 学校6 学校7

k_means算法+python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. k_means算法的C++实现

    首先画出k_means算法的流程图:

  5. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  6. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 图解leetcode5-10 | 和233酱一起刷leetcode系列(2)

    本周我们继续来看5道磨人的小妖精,图解leetcode6-10- 多说一句,leetcode10 杀死了233酱不少脑细胞... 另: 沉迷算法,无法自拔.快来加入我们吧! 别忘了233酱的一条龙服务 ...

  2. SpringMVC 学习笔记(7)spring和springmvc的整合

    58. 尚硅谷_佟刚_SpringMVC_Spring整合SpringMVC_解决方案.avi 解决办法让springmvc值扫描@Control控制层和@ControllerAdvice对应的异常处 ...

  3. 4、struct2的支持团队开发

    在一个大型的项目中,不同的人都开发不同的模块,不能所有的人都去操作同一个struct.xml文件,我们应该对于不同的模块对应不同的配置文件 列如我们对应的登陆模块,我们可以编写一个登陆的配置文件 1. ...

  4. day01---学习Mysql高级性能优化1

    Mysql逻辑架构图

  5. 1166 - Unknown error 1166[mysql 错误

    错误码 1166 原因 字段名因为是复制过来的, 末尾存在了一个空格换行

  6. SQL中的ON DUPLICATE KEY UPDATE使用详解

    一:主键索引,唯一索引和普通索引的关系主键索引 主键索引是唯一索引的特殊类型. 数据库表通常有一列或列组合,其值用来唯一标识表中的每一行.该列称为表的主键. 在数据库关系图中为表定义一个主键将自动创建 ...

  7. UID,GID,口令

    摘自:http://cn.linux.vbird.org/linux_basic/0410accountmanager_1.php (完)

  8. Python3笔记002 - 1.2 搭建python开发环境

    第1章 认识python 1.2 搭建python开发环境 1.2.1 python开发环境概述 python开发环境常见的操作系统: Windows Mac OS Linux 1.2.2 安装pyt ...

  9. JavaScript之DOM的增删改查

    JavaScript的组成: 1. ECMAScript-语法规范 2. Web APIs(浏览器提供的工具) (1).BOM (浏览器对象模型) (2).DOM (文档对象模型) 今天就来讲讲DOM ...

  10. 12.Clear Flags属性与天空盒

    选中Hierarchy面板的摄像机,然后在右侧Inspector面板的Clear Flags属性可以找到有如下选项, SkyBox:天空盒(默认效果,让场景看着有一个天空) Solid Color:固 ...