Alice's Chance
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7327   Accepted: 2992

Description

Alice, a charming girl, have been dreaming of being a movie star for long. Her chances will come now, for several filmmaking companies invite her to play the chief role in their new films. Unfortunately, all these companies will start making the films at the same time, and the greedy Alice doesn't want to miss any of them!! You are asked to tell her whether she can act in all the films.

As for a film, 

  1. it will be made ONLY on some fixed days in a week, i.e., Alice can only work for the film on these days;
  2. Alice should work for it at least for specified number of days;
  3. the film MUST be finished before a prearranged deadline.

For example, assuming a film can be made only on Monday, Wednesday and Saturday; Alice should work for the film at least for 4 days; and it must be finished within 3 weeks. In this case she can work for the film on Monday of the first week, on Monday and Saturday of the second week, and on Monday of the third week.

Notice that on a single day Alice can work on at most ONE film.

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a single line containing an integer N (1 <= N <= 20), the number of films. Each of the following n lines is in the form of "F1 F2 F3 F4 F5 F6 F7 D W". Fi (1 <= i <= 7) is 1 or 0, representing whether the film can be made on the i-th day in a week (a week starts on Sunday): 1 means that the film can be made on this day, while 0 means the opposite. Both D (1 <= D <= 50) and W (1 <= W <= 50) are integers, and Alice should go to the film for D days and the film must be finished in W weeks.

Output

For each test case print a single line, 'Yes' if Alice can attend all the films, otherwise 'No'.

Sample Input

2
2
0 1 0 1 0 1 0 9 3
0 1 1 1 0 0 0 6 4
2
0 1 0 1 0 1 0 9 4
0 1 1 1 0 0 0 6 2

Sample Output

Yes
No

Hint

A proper schedule for the first test case:

date     Sun    Mon    Tue    Wed    Thu    Fri    Sat

week1 film1 film2 film1 film1

week2 film1 film2 film1 film1

week3 film1 film2 film1 film1

week4 film2 film2 film2

Source

题意:
有n部电影需要拍摄,每部电影在一个星期内只有固定的几天可以拍,一天只能拍一种电影,并被拍完这部电影需要d天,必须在w周之内拍完,问能否全部拍完这n部电影
输入t组数据
输入n
输入n行,每行9个数,前七个表示这部电影在一周之内那几点可以拍(1表示可以拍,0表示不能),后两个数d,w
代码:
//每部电影拆点,容量为拍摄需要的天数,每一天拆点容量为1(一天只能拍一个电影),然后把电影和天之间建边容量为1
//(w周共有7*w天),源点连向电影,天连向汇点,求最大流是否等于拍摄电影的总天数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void Init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
int main()
{
int t,n,a[];
scanf("%d",&t);
while(t--){
scanf("%d",&n);
dc.Init();
int sum=;
for(int i=;i<=n;i++){
for(int j=;j<=;j++)
scanf("%d",&a[j]);
sum+=a[];
dc.Addedge(i,i+n,a[]);
for(int j=;j<=;j++){
if(a[j]==) continue;
for(int k=;k<a[];k++)
dc.Addedge(i+n,j+k*+,);
}
dc.Addedge(,i,inf);
}
for(int i=;i<=;i++){
dc.Addedge(i,i+,);
dc.Addedge(i+,,inf);
}
if(dc.Maxflow(,)==sum) printf("Yes\n");
else printf("No\n");
}
return ;
}

POJ 1698 最大流的更多相关文章

  1. POJ 1698 Alice&#39;s Chance(最大流+拆点)

    POJ 1698 Alice's Chance 题目链接 题意:拍n部电影.每部电影要在前w星期完毕,而且一周仅仅有一些天是能够拍的,每部电影有个须要的总时间,问能否拍完电影 思路:源点向每部电影连边 ...

  2. poj 1698 Alice‘s Chance

    poj 1698  Alice's Chance 题目地址: http://poj.org/problem?id=1698 题意: 演员Alice ,面对n场电影,每场电影拍摄持续w周,每周特定几天拍 ...

  3. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  4. poj 1698 Alice's Chance 最大流

    题目:给出n部电影的可以在周几拍摄.总天数.期限,问能不能把n部电影接下来. 分析: 对于每部电影连上源点,流量为总天数. 对于每一天建立一个点,连上汇点,流量为为1. 对于每部电影,如果可以在该天拍 ...

  5. 图论--网络流--最大流--POJ 1698 Alice's Chance

    Description Alice, a charming girl, have been dreaming of being a movie star for long. Her chances w ...

  6. poj 1698 Alice&#39;s Chance 拆点最大流

    将星期拆点,符合条件的连边,最后统计汇点流量是否满即可了,注意结点编号. #include<cstdio> #include<cstring> #include<cmat ...

  7. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  8. 【POJ 1698】Alice's Chance(二分图多重匹配)

    http://poj.org/problem?id=1698 电影和日子匹配,电影可以匹配多个日子. 最多有maxw*7个日子. 二分图多重匹配完,检查一下是否每个电影都匹配了要求的日子那么多. #i ...

  9. poj 1273 最大流

    题目链接:http://poj.org/problem?id=1273 a.EK算法:(Edmond-Karp): 用BFS不断找增广路径,当找不到增广路径时当前流量即为最大流. b.dinic算法: ...

随机推荐

  1. 孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境

    孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境 (完整学习过程屏幕记录视频地址在文末) 学习Python我肯定不会错过图片文字的识别,当然更重要的是简单的验证码识别了,今天 ...

  2. 浙江天搜科技落棋人工智能,加速AI产业布局

    8月31日,2018年IFA大展在德国柏林正式开幕.IFA是全球三大消费电子展之一,在世界范围内久负盛名,被誉为“未来科技风向标”.在这个万众瞩目的展会上,号称“给智能世界铺上云的跑道,装上智能发动机 ...

  3. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

  4. pxe+kickstart无人值守安装

    常用软件安装及使用目录 第1章 以前是怎么安装系统的 l 光盘(ISO文件,光盘的镜像文件)===>每一台物理机都得给一个光驱,如果用外置光驱的话,是不是每台机器都需要插一下 l U盘:ISO镜 ...

  5. vue.js学习之 如何在手机上查看vue-cli构建的项目

    vue.js学习之 如何在手机上查看vue-cli构建的项目 一:找到config文件夹下的index.js文件,打开后,将host的值改为你本地的ip,保存后重启项目 二:输入ip和端口号打开项目 ...

  6. 计算器软件实现系列(五)策略模式+asp.net

    一 策略模式代码的编写 using System; using System.Collections.Generic; using System.Linq; using System.Web; /// ...

  7. LintCode-72.中序遍历和后序遍历树构造二叉树

    中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...

  8. iOS- <项目笔记>UI控件常见属性总结

    1.UIView // 如果userInteractionEnabled=NO,不能跟用户交互 @property(nonatomic,getter=isUserInteractionEnabled) ...

  9. Hive整体优化策略

    一 整体架构优化 现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez.Spark等.根据不同的计算引擎又可以使用不同的资源调度和存储系统. 整体架构优化点: 1 根据 ...

  10. SVM之核函数

    SVM之问题形式化 SVM之对偶问题 >>>SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题 ...