用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)
数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b
具体的方法和代码以如下方程(3x3矩阵)为例进行说明:
用列主元消去法分别解方程组Ax=b,用MATLAB程序实现:
(1)
1、 实现该方程的解的MATLAB代码可以分为两种,一种是入门级别的,只是简单地计算出这道题即可,第二种是一种通用的代码,可以实现很多3x3矩阵的方程解,写好以后只需要改不同矩阵里的元素即可算出相应的解,需要建立在对MATLAB比较熟悉的基础上,具体如下:
第一种代码实现—入门级:
A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]
A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]
B1=A1(1,1:4)
C1=A1(2,1:4)
D1=A1(3,1:4)
E1=-1.27/3.01*B1+C1
F1=-0.987/3.01*B1+D1
p1=E1(1,2)
q1=F1(1,2)
if (abs(p1)>=abs(q1))
a1=p1
a2=q1
FF1=E1
EE1=F1
else
a1=q1
a2=p1
FF1=F1
EE1=E1
end
G1=-a2/a1*FF1+EE1
H1=[E11;FF1;G1]
J1=H1(1:3,1:3)
b1=H1(1:3,4)
x1=J1\b1
第二种代码实现如下—熟练通用级:
A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]
A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]
B1=A1(1,1:4)
C1=A1(2,1:4)
D1=A1(3,1:4)
f1=A1(1,1)
f2=A1(2,1)
f3=A1(3,1)
if (abs(f1)>=abs(f2))
if(abs(f1)>=abs(f3))
f11=f1
E11=B1
f22=f2
E12=C1
f33=f3
E13=D1
else
f11=f3
E11=D1
f22=f1
E12=B1
f33=f2
E13=C1
end
end
if(abs(e2)>=abs(e3))
f11=f2
E11=C1
f22=f1
E12=B1
f33=f3
E13=D1
else
f11=f3
E11=D1
f22=f1
E12=B1
f33=f2
E13=C1
end
E1=-f22/f11*E11+E12
F1=-f33/f11*E11+E13
p1=E1(1,2)
q1=F1(1,2)
if (abs(p1)>=abs(q1))
a1=p1
a2=q1
FF1=E1
EE1=F1
else
a1=q1
a2=p1
FF1=F1
EE1=E1
end
G1=-a2/a1*FF1+EE1
H1=[E11;FF1;G1]
J1=H1(1:3,1:3)
b1=H1(1:3,4)
x1=J1\b1
输出结果如下:
A =
3.0100 6.0300 1.9900
1.2700 4.1600 -1.2300
0.9870 -4.8100 9.3400
A1 =
3.0100 6.0300 1.9900 1.0000
1.2700 4.1600 -1.2300 1.0000
0.9870 -4.8100 9.3400 1.0000
B1 =
3.0100 6.0300 1.9900 1.0000
C1 =
1.2700 4.1600 -1.2300 1.0000
D1 =
0.9870 -4.8100 9.3400 1.0000
f1 =
3.0100
f2 =
1.2700
f3 =
0.9870
f11 =
3.0100
E11 =
3.0100 6.0300 1.9900 1.0000
f22 =
1.2700
E12 =
1.2700 4.1600 -1.2300 1.0000
e33 =
0.9870
E13 =
0.9870 -4.8100 9.3400 1.0000
e11 =
1.2700
E11 =
1.2700 4.1600 -1.2300 1.0000
e22 =
3.0100
E12 =
3.0100 6.0300 1.9900 1.0000
e33 =
0.9870
E13 =
0.9870 -4.8100 9.3400 1.0000
E1 =
0 -3.8295 4.9052 -1.3701
F1 =
0 -8.0430 10.2959 0.2228
p1 =
-3.8295
q1 =
-8.0430
a1 =
-8.0430
a2 =
-3.8295
FF1 =
0 -8.0430 10.2959 0.2228
EE1 =
0 -3.8295 4.9052 -1.3701
G1 =
0 0 0.0030 -1.4762
H1 =
1.2700 4.1600 -1.2300 1.0000
0 -8.0430 10.2959 0.2228
0 0 0.0030 -1.4762
J1 =
1.2700 4.1600 -1.2300
0 -8.0430 10.2959
0 0 0.0030
b1 =
1.0000
0.2228
-1.4762
x1 =
1592.6
-631.9
-493.6
可以看出:两种代码的区别在于列主元方法中每一步对每一列最大主元的判断上面,第一种直接看出来,所以就用具体的数字代替了,而第二种对变量进行了一般性的定义和赋值,通过if语句进行大小判断,这样的方法会比较通用,建立在对于MATLAB熟练的基础上。
用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)的更多相关文章
- 【线性代数】2-1:解方程组(Ax=b)
title: [线性代数]2-1:解方程组(Ax=b) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 15:08:3 ...
- 列主元消去法&全主元消去法——Java实现
Gauss.java package Gauss; /** * @description TODO 父类,包含高斯列主元消去法和全主元消去法的共有属性和方法 * @author PengHao * @ ...
- matlab 解方程组
1.解方程 最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=in ...
- 详解什么是平衡二叉树(AVL)(修订补充版)
详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...
- 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)
转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取 (Matlab 程序详解) ...
- 解同余式ax ≡ c(mod m)
将式子变形为 ax-c=my 可以看出原式有解当且仅当线性方程ax-my=c有解 设g = gcd(a, m) 则所有形如ax-my的数都是g的倍数 因此如果g不整除c则原方程无解. 下面假设g整除c ...
- exgcd 解同余方程ax=b(%n)
ax=n(%b) -> ax+by=n 方程有解当且仅当 gcd(a,b) | n ( n是gcd(a,b)的倍数 ) exgcd解得 a*x0+b*y0=gcd(a,b) 记k=n/gc ...
- 解不定方程ax+by=m的最小解
给出方程a*x+b*y=c,其中所有数均是整数,且a,b,c是已知数,求满足那个等式的x,y值?这个方程可能有解也可能没解也可能有无穷多个解(注意:这里说的解都是整数解)? 既然如此,那我们就得找出有 ...
- hdu4975 网络流解方程组(网络流+dfs判环或矩阵DP)
http://acm.hdu.edu.cn/showproblem.php?pid=4975 A simple Gaussian elimination problem. Time Limit: 20 ...
随机推荐
- 相机姿态估计(Pose Estimation)
(未完待续.....) 根据针孔相机模型,相机成像平面一点的像素坐标p和该点在世界坐标系下的3D坐标P有$p=KP$的关系,如果用齐次坐标表示则有: $$dp=KP$$ 其中d是空间点深度(为了将p的 ...
- mobBUS
1.今天听陈刚说起modBUS通信协议,这个还是第一次听说,究竟是什么东东,还是上网查查看吧 2.网上有C语言程序. http://blog.163.com/li_g888@126/blog/stat ...
- Spring入门第一课:Spring基础与配置Bean
1.入门 Spring是简化java开发的一个框架,其中IoC和AOP是Spring的两个重要核心.由于Spring是非侵入性的,通过Ioc容器来管理bean的生命周期,还整合了许多其他的优秀框架,所 ...
- UIView常用的一些方法setNeedsDisplay和setNeedsLayout
1,UIView的setNeedsDisplay和setNeedsLayout方法 首先两个方法都是异步执行的.而setNeedsDisplay会调用自动调用drawRect方法,这样可以拿到 UI ...
- windows10上安装mysql
环境:windwos 10(1511) 64bit.mysql 5.7.14 一.下载mysql 1. 在浏览器里打开mysql的官网http://www.mysql.com/ 2. 进入页面顶部的& ...
- 在Notepad++中使用文本对比插件
目前Notepad++最新版是7.5.1,但很多插件仍然不能在64位版中使用,官网上是这么说的“Note that the most of plugins (including Plugin Mana ...
- SQL Server 2012 - 动态SQL查询
动态SQL的两种执行方式:EXEC @sql 和 EXEC sys.sp_executesql @sql DECLARE @c_ids VARCHAR(200) SET @c_ids ='1,2' - ...
- iOS 清理Xcode项目中没有使用到的图片资源和类文件
接手到一个旧的项目,但是发现里面有太多的无用资源,包括升级app后,一些无用的图片资源并没有被删掉,导致app在打包成ipa包以后,文件变大.手边这个项目IM要更换成环信的IM,之前的一些旧的SDK, ...
- 启动pip时,< Fatal error in launcher: Unable to create process using '"' >问题的原因及解决方法
根本原因 要启动的pip程序,中指定的python程序路径不对 实例分析 我的window电脑上同时安装了python2.7和python3.6,他们的安装路径如下图: 注意图python2.7中红线 ...
- Laravel 开发支付宝支付与提现转账问题小结
由于项目需要,所以需要开发支付宝支付与微信支付,支付部分采用了 yansongda/pay https://packagist.org/packages/yansongda/pay https ...