数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b

具体的方法和代码以如下方程(3x3矩阵)为例进行说明:

用列主元消去法分别解方程组Ax=b,用MATLAB程序实现:

(1)

1、 实现该方程的解的MATLAB代码可以分为两种,一种是入门级别的,只是简单地计算出这道题即可,第二种是一种通用的代码,可以实现很多3x3矩阵的方程解,写好以后只需要改不同矩阵里的元素即可算出相应的解,需要建立在对MATLAB比较熟悉的基础上,具体如下:

第一种代码实现—入门级:

A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]

A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]

B1=A1(1,1:4)

C1=A1(2,1:4)

D1=A1(3,1:4)

E1=-1.27/3.01*B1+C1

F1=-0.987/3.01*B1+D1

p1=E1(1,2)

q1=F1(1,2)

if (abs(p1)>=abs(q1))

    a1=p1

    a2=q1

    FF1=E1

    EE1=F1

else

    a1=q1

    a2=p1

    FF1=F1

    EE1=E1

end

G1=-a2/a1*FF1+EE1

H1=[E11;FF1;G1]

J1=H1(1:3,1:3)

b1=H1(1:3,4)

x1=J1\b1

第二种代码实现如下—熟练通用级:

A=[3.01,6.03,1.99,;1.27,4.16,-1.23,;0.987,-4.81,9.34]

A1=[3.01,6.03,1.99,1;1.27,4.16,-1.23,1;0.987,-4.81,9.34,1]

B1=A1(1,1:4)

C1=A1(2,1:4)

D1=A1(3,1:4)

f1=A1(1,1)

f2=A1(2,1)

f3=A1(3,1)

if (abs(f1)>=abs(f2))

    if(abs(f1)>=abs(f3))

        f11=f1

        E11=B1

        f22=f2

        E12=C1

        f33=f3

        E13=D1

    else

        f11=f3

        E11=D1

        f22=f1

        E12=B1

        f33=f2

        E13=C1

    end

end

    if(abs(e2)>=abs(e3))

        f11=f2

        E11=C1

        f22=f1

        E12=B1

        f33=f3

        E13=D1

    else

        f11=f3

        E11=D1

        f22=f1

        E12=B1

        f33=f2

        E13=C1

    end   

E1=-f22/f11*E11+E12

F1=-f33/f11*E11+E13

p1=E1(1,2)

q1=F1(1,2)

if (abs(p1)>=abs(q1))

    a1=p1

    a2=q1

    FF1=E1

    EE1=F1

else

    a1=q1

    a2=p1

    FF1=F1

    EE1=E1

end

G1=-a2/a1*FF1+EE1

H1=[E11;FF1;G1]

J1=H1(1:3,1:3)

b1=H1(1:3,4)

x1=J1\b1

输出结果如下:

A =

3.0100    6.0300    1.9900

1.2700    4.1600   -1.2300

0.9870   -4.8100    9.3400

A1 =

3.0100    6.0300    1.9900    1.0000

1.2700    4.1600   -1.2300    1.0000

0.9870   -4.8100    9.3400    1.0000

B1 =

3.0100    6.0300    1.9900    1.0000

C1 =

1.2700    4.1600   -1.2300    1.0000

D1 =

0.9870   -4.8100    9.3400    1.0000

f1 =

3.0100

f2 =

1.2700

f3 =

0.9870

f11 =

3.0100

E11 =

3.0100    6.0300    1.9900    1.0000

f22 =

1.2700

E12 =

1.2700    4.1600   -1.2300    1.0000

e33 =

0.9870

E13 =

0.9870   -4.8100    9.3400    1.0000

e11 =

1.2700

E11 =

1.2700    4.1600   -1.2300    1.0000

e22 =

3.0100

E12 =

3.0100    6.0300    1.9900    1.0000

e33 =

0.9870

E13 =

0.9870   -4.8100    9.3400    1.0000

E1 =

0   -3.8295    4.9052   -1.3701

F1 =

0   -8.0430   10.2959    0.2228

p1 =

-3.8295

q1 =

-8.0430

a1 =

-8.0430

a2 =

-3.8295

FF1 =

0   -8.0430   10.2959    0.2228

EE1 =

0   -3.8295    4.9052   -1.3701

G1 =

0         0    0.0030   -1.4762

H1 =

1.2700    4.1600   -1.2300    1.0000

0   -8.0430   10.2959    0.2228

0         0    0.0030   -1.4762

J1 =

1.2700    4.1600   -1.2300

0   -8.0430   10.2959

0         0    0.0030

b1 =

1.0000

0.2228

-1.4762

x1 =

   1592.6

   -631.9

   -493.6

可以看出:两种代码的区别在于列主元方法中每一步对每一列最大主元的判断上面,第一种直接看出来,所以就用具体的数字代替了,而第二种对变量进行了一般性的定义和赋值,通过if语句进行大小判断,这样的方法会比较通用,建立在对于MATLAB熟练的基础上。

用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)的更多相关文章

  1. 【线性代数】2-1:解方程组(Ax=b)

    title: [线性代数]2-1:解方程组(Ax=b) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 15:08:3 ...

  2. 列主元消去法&全主元消去法——Java实现

    Gauss.java package Gauss; /** * @description TODO 父类,包含高斯列主元消去法和全主元消去法的共有属性和方法 * @author PengHao * @ ...

  3. matlab 解方程组

    1.解方程 最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=in ...

  4. 详解什么是平衡二叉树(AVL)(修订补充版)

    详解什么是平衡二叉树(AVL)(修订补充版) 前言 Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树.查 ...

  5. 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)

    转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取   (Matlab 程序详解) ...

  6. 解同余式ax ≡ c(mod m)

    将式子变形为 ax-c=my 可以看出原式有解当且仅当线性方程ax-my=c有解 设g = gcd(a, m) 则所有形如ax-my的数都是g的倍数 因此如果g不整除c则原方程无解. 下面假设g整除c ...

  7. exgcd 解同余方程ax=b(%n)

    ax=n(%b)  ->   ax+by=n 方程有解当且仅当 gcd(a,b) | n ( n是gcd(a,b)的倍数 ) exgcd解得 a*x0+b*y0=gcd(a,b) 记k=n/gc ...

  8. 解不定方程ax+by=m的最小解

    给出方程a*x+b*y=c,其中所有数均是整数,且a,b,c是已知数,求满足那个等式的x,y值?这个方程可能有解也可能没解也可能有无穷多个解(注意:这里说的解都是整数解)? 既然如此,那我们就得找出有 ...

  9. hdu4975 网络流解方程组(网络流+dfs判环或矩阵DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=4975 A simple Gaussian elimination problem. Time Limit: 20 ...

随机推荐

  1. px,rem,em的区别

    PX特点 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的原因在于其使用了em或rem作为字体单位: 3. Firefox能够调整px和em,rem,但是96%以上 ...

  2. nodejs实战的github地址,喜欢的你还等啥

    第一章.第二章:使用Express + MongoDB搭建多人博客:https://github.com/nswbmw/N-blog 第三章:使用Redis搭建漂流瓶服务器:https://githu ...

  3. POJ 3984 迷宫问题(简单bfs+路径打印)

    传送门: http://poj.org/problem?id=3984 迷宫问题 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

  4. unittest单元测试框架之unittest 框架的总结(七)

    1. Unittest 是 python 自带的单元测试框架,可以用其作为自动化框架来组织测试用例(测 试用例的执行顺序)的执行. 2. Unittest 框架的流程: 写好 TestCase 通过 ...

  5. Web—01-快速入门:HTML

    html概述和基本结构 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  6. oracle 12如何解锁账户锁定状态及修改忘记的密码

    有两种方法,大同小异吧,感觉命令真是个好东西,哈哈哈哈,挽救了我安了4次才安好的oracle!!! 方法一: 1.如果忘记密码,找到忘记密码的是哪个用户身份,如果用户被锁定,可以使用下面说的方法解除锁 ...

  7. 我的前端工具集(七)div背景网格

    我的前端工具集(七)div背景网格   liuyuhang原创,未经允许禁止转载 目录 我的前端工具集 有时候总觉得div颜色过于白,于是给了10%的灰 但是并不一定能解决问题,因为页面中会有不均衡的 ...

  8. angular常用属性大全

    Angular元素属性大全 addClass()-为每个匹配的元素添加指定的样式类名 after()-在匹配元素集合中的每个元素后面插入参数所指定的内容,作为其兄弟节点 append()-在每个匹配元 ...

  9. 使用js实现单向绑定

    详细解释单向绑定 参考资料 MDN addEventListener()定义与用法 <!DOCTYPE html> <html lang="en"> < ...

  10. Scala 语法(一)

    (1)基本语法 变量 val var(可变变量): 数据类型 Byte,Char,Int,Short,Long,String(字符),Float,Double,Boolean(true,flase). ...