嘟嘟嘟

很显然是一道最小割模型。

做完几道题后。图的大概就能想出来了:

1.对于每一个动物,如果是0,就和s连一条边,否则向t连一条边。

2.对于每一个任务,题中要求最大利润,可以转化成最小损失。

  (1)如果都要变成1,就向汇点连一条w +g(如果有的话)的边;否则从源点连一条w +g的边。接下来

  (2)对于任务中涉及的每一个点,刚开始我想如果任务要变成1,而他本身还是1就不连边,否则连一条INF的边,然后我就发现任务之间是互相影响的,而这种方式体现不出来,然后我就想不出来了……

     题解是这么说的:如果这个任务是0,就向所有涉及到的点连边,否则这些点向他连边,然后我就画了一个图,发现好像还真是这么回事:

如果我们要达成任务1的话,就要割掉(2->t), (3->t)两条边,但是图还是联通的,因此还得割掉([2]->t)的边,也就同时说明了任务2不可达成。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1.2e4 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, m, t;
int g, val[maxn], sum = ;
bool a[maxn]; struct Edge
{
int from, to, cap, flow;
};
vector<Edge> edges;
vector<int> G[maxn];
void addEdge(int from, int to, int w)
{
edges.push_back((Edge){from, to, w, });
edges.push_back((Edge){to, from, , });
int sz = edges.size();
G[from].push_back(sz - );
G[to].push_back(sz - );
} int dis[maxn];
bool bfs()
{
Mem(dis, ); dis[] = ;
queue<int> q; q.push();
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = ; i < (int)G[now].size(); ++i)
{
Edge& e = edges[G[now][i]];
if(!dis[e.to] && e.cap > e.flow)
{
dis[e.to] = dis[now] + ;
q.push(e.to);
}
}
}
return dis[t];
}
int cur[maxn];
int dfs(int now, int res)
{
if(now == t || res == ) return res;
int flow = , f;
for(int& i = cur[now]; i < (int)G[now].size(); ++i)
{
Edge& e = edges[G[now][i]];
if(dis[e.to] == dis[now] + && (f = dfs(e.to, min(res, e.cap - e.flow))) > )
{
e.flow += f;
edges[G[now][i] ^ ].flow -= f;
flow += f; res -= f;
if(res == ) break;
}
}
return flow;
} int minCut()
{
int flow = ;
while(bfs())
{
Mem(cur, );
flow += dfs(, INF);
}
return flow;
} int main()
{
n = read(), m = read(), g = read();
t = n + m + ;
for(int i = ; i <= n; ++i) a[i] = (bool)read();
for(int i = ; i <= n; ++i)
{
int x = read();
if(a[i]) addEdge(i, t, x);
else addEdge(, i, x);
}
for(int i = ; i <= m; ++i)
{
int op = read(), w = read(), k = read();
sum += w;
for(int j = ; j <= k; ++j)
{
int id = read();
if(op) addEdge(id, i + n, INF);
else addEdge(i + n, id, INF);
}
int flg = read();
if(op) addEdge(i + n, t, w + flg * g);
else addEdge(, i + n, w + flg * g);
}
write(sum - minCut()); enter;
return ;
}

CF311E Biologist的更多相关文章

  1. 【CF331E】Biologist(网络流,最小割)

    [CF331E]Biologist(网络流,最小割) 题面 洛谷 翻译: 有一个长度为\(n\)的\(01\)串,将第\(i\)个位置变为另外一个数字的代价是\(v_i\). 有\(m\)个要求 每个 ...

  2. 【CodeForces】【311E】Biologist

    网络流/最大权闭合图 题目:http://codeforces.com/problemset/problem/311/E 嗯这是最大权闭合图中很棒的一道题了- 能够1A真是开心-也是我A掉的第一道E题 ...

  3. CF 331 E. Biologist

    CF 331 E. Biologist 题目描述 题目大意:有\(n\)个点,初始时每个点为黑色或者白色,你可以花费\(v_i\)的代价将一个点反色.然后你有许多计划,每个计划要求一个点集中的所有点为 ...

  4. So you want to be a computational biologist?

    So you want to be a computational biologist? computational biology course

  5. Codeforces 311.E Biologist

    E. Biologist time limit per test 1.5 seconds memory limit per test 256 megabytes input standard inpu ...

  6. Codeforces 311E Biologist

    Discription SmallR is a biologist. Her latest research finding is how to change the sex of dogs. In ...

  7. FreeMarker中文API手册(完整)

    FreeMarker概述 FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写 FreeMarker被设计用来生成HTML Web页面,特别是基于MVC模式的应用 ...

  8. HDU-4057 Rescue the Rabbit(AC自动机+DP)

    Rescue the Rabbit Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. FreeMark学习(一)

    FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写 FreeMarker被设计用来生成HTML Web页面,特别是基于MVC模式的应用程序 虽然FreeMark ...

随机推荐

  1. wcf 登录认证 angular 认证重定向

    自定义认证管理器,分为两级:1.登陆认证.2.权限认证.权限主要是用户.角色.角色用户关系.功能(系统资源).角色功能关系,5部分决定用户的权限(视图). 两层认证都通过后,更新session的最新交 ...

  2. net core 发布到服务器的方式

    ---恢复内容开始(15:05:15)--- using (var scope = ServiceProvider.CreateScope()){ var aSubscriber = Activato ...

  3. WebAPI搭建(二) 让WebAPI 返回JSON格式的数据

    在RestFul风格盛行的年代,对接接口大多数人会选择使用JSON,XML和JSON的对比传送(http://blog.csdn.net/liaomin416100569/article/detail ...

  4. Java Netty简介

    Netty和Mina是Java世界非常知名的通讯框架.它们都出自同一个作者,Mina诞生略早,属于Apache基金会,而Netty开始在Jboss名下,后来出来自立门户netty.io(http:// ...

  5. 建造者(生成器)模式C++、Java实现

    1.建造者模式UML 图1. 建造者模式UML 2.C++实现 C++实现类视图: 图2. 建造者模式C++实现的类视图 其中,Product的实现代码是(ProductA和ProductB的代码不再 ...

  6. VC++ IPv6的支持

    最近根据项目需要,要在产品中添加对IpV6的支持,因此研究了一下IPV6的相关内容,Ipv6 与原来最直观的改变就是地址结构的改变,IP地址由原来的32位扩展为128,这样原来的地址结构肯定就不够用了 ...

  7. flask用session记录状态

    html <form action="/login" method="POST"> <input type="text" ...

  8. 006服务监控看板Hystrix Dashboard

    1.POM配置 和普通Spring Boot工程相比,仅仅添加了Hystrix Dashboard和Spring Boot Starter Actuator依赖 <dependencies> ...

  9. 服务器端渲染VS浏览器端渲染

    1)浏览器渲染和服务器渲染区别:何为渲染?如果我们只是想显示一堆不变的数据,那么我们直接写一个a.html丢到服务器上让客户端访问就可以了.但这是基本不可能的事情,数据一般是变化的.你不可能为每套数据 ...

  10. 安卓app应用开发资料

    android 配置文件画图 http://blog.csdn.net/loongggdroid/article/details/46687589 android下拉刷新控件 https://gith ...