http://www.lydsy.com/JudgeOnline/problem.php?id=2653

Description

一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。给你一个
长度为n的序列s。回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。位置也从0开始标号。我会使用一些方式强制你在线。

Input

第一行序列长度n。接下来n行按顺序给出a中的数。
接下来一行Q。然后Q行每行a,b,c,d,我们令上个询问的答案是
x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的
要询问的a=q[0],b=q[1],c=q[2],d=q[3]。  
输入保证满足条件。

Output

Q行依次给出询问的答案。

Sample Input

5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0

Sample Output

271451044
271451044
969056313

——————————————————————————

debug真爽……一会再讲我神奇的debug经历。

(因为参照代码太多了所以就不一一贴了)

我们考虑如何求一个数比中位数大还是小。

方法很简单:将小于该数的数一律变成-1,大于等于的变为1,求和,如果和>=0即*可能为*这个数。

也就是说,我们可以用这个方法二分答案来求得中位数。

那么我们对于一组询问a,b,c,d,判断x与中位数的大小关系,就可以是求最大子序列和的过程了。

那么我们按照元素下标建线段树,并且存储每个区间的最大左/右连续和,,每个区间的和。

那么答案就是(ab最大右连续和)+(bc和)+(cd最大左连续和)。

但是我们不可能为每一组询问重新开一棵线段树,所以我们需要一种*预处理*所有可能的线段树的方法。

于是我们想到了主席树。

我们先对数列排序,这样假设我们中位数下标(以下都是排序后的新下标)为x,则显然0~x-1都是-1,而x~n-1都是1

那么我们的建树过程无非就是第一棵树全是1,而后的树对于前面的树的值都更新为-1就可以了。

(看着复杂,代码也复杂,debug1h一无所获,最后我精简代码发现我i和j搞反了……)

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct tree{
int l,r,sum,lx,rx;
}tr[N*];
struct num{
int v,p;
}a[N];
int rt[N],n,m,q,pool,p[];
bool cmp(num f,num s){return f.v<s.v;}
inline void update(int x){
tr[x].sum=tr[tr[x].l].sum+tr[tr[x].r].sum;
tr[x].lx=max(tr[tr[x].l].lx,tr[tr[x].l].sum+tr[tr[x].r].lx);
tr[x].rx=max(tr[tr[x].r].rx,tr[tr[x].r].sum+tr[tr[x].l].rx);
return;
}
inline void build(int &x,int l,int r){
x=++pool;
if(l==r){
tr[x].sum=tr[x].lx=tr[x].rx=;
return;
}
int mid=(l+r)>>;
build(tr[x].l,l,mid);
build(tr[x].r,mid+,r);
update(x);
return;
}
inline void insert(int y,int &x,int l,int r,int p,int v){
tr[x=++pool]=tr[y];
if(l==r){
tr[x].sum=tr[x].lx=tr[x].rx=v;
return;
}
int mid=(l+r)>>;
if(p<=mid)insert(tr[y].l,tr[x].l,l,mid,p,v);
else insert(tr[y].r,tr[x].r,mid+,r,p,v);
update(x);
return;
}
inline int query_all(int k,int l,int r,int l1,int r1){
if(l==l1&&r==r1)return tr[k].sum;
int mid=(l+r)>>;
if(r1<=mid) return query_all(tr[k].l,l,mid,l1,r1);
else if(l1>mid) return query_all(tr[k].r,mid+,r,l1,r1);
else return query_all(tr[k].l,l,mid,l1,mid)+query_all(tr[k].r,mid+,r,mid+,r1);
}
inline int query_l(int k,int l,int r,int l1,int r1){
if(l==l1&&r==r1)return tr[k].lx;
int mid=(l+r)>>;
if(r1<=mid) return query_l(tr[k].l,l,mid,l1,r1);
else if(l1>mid) return query_l(tr[k].r,mid+,r,l1,r1);
else return max(query_l(tr[k].l,l,mid,l1,mid),query_all(tr[k].l,l,mid,l1,mid)+query_l(tr[k].r,mid+,r,mid+,r1));
}
inline int query_r(int k,int l,int r,int l1,int r1){
if(l==l1&&r==r1)return tr[k].rx;
int mid=(l+r)>>;
if(r1<=mid) return query_r(tr[k].l,l,mid,l1,r1);
else if(l1>mid) return query_r(tr[k].r,mid+,r,l1,r1);
else return max(query_r(tr[k].r,mid+,r,mid+,r1),query_all(tr[k].r,mid+,r,mid+,r1)+query_r(tr[k].l,l,mid,l1,mid));
}
bool pan(int k){
int sum=;
if(p[]+<p[])sum+=query_all(rt[k],,n-,p[]+,p[]-);
sum+=query_r(rt[k],,n-,p[],p[]);
sum+=query_l(rt[k],,n-,p[],p[]);
return sum>=;
}
int erfen(){
int l=,r=n-,ans;
while(l<=r){
int mid=(l+r)>>;
if(pan(mid)){
ans=a[mid].v;
l=mid+;
}else r=mid-;
}
return ans;
}
int main(){
n=read();
for(int i=;i<n;i++){
a[i].v=read();
a[i].p=i;
}
sort(a,a+n,cmp);
build(rt[],,n-);
for(int i=;i<n;i++)insert(rt[i-],rt[i],,n-,a[i-].p,-);
q=read();
int pre=;
for(int i=;i<=q;i++){
for(int j=;j<;j++)p[j]=(read()+pre)%n;
sort(p,p+);
printf("%d\n",pre=erfen());
}
return ;
}

BZOJ2653:middle——题解的更多相关文章

  1. BZOJ2653 middle 【主席树】【二分】*

    BZOJ2653 middle Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样 ...

  2. 题解【bzoj2653 middle】

    Description 给你一个序列,每次询问给出四个数 \(a,b,c,d\),求所有区间 \([l,r]\) 满足 \(l \in [a,b], r \in [c,d]\) 的中位数的最大值.强制 ...

  3. bzoj2653: middle

    首先,对于每个询问,我们二分答案 然后对于序列中大于等于中位数的数,我们把它们置为1,小于中位数的数,置为-1 那么如果一个区间和大于等于0,那么就资磁,否则就不滋磁 这个区间和呢,我们可以用主席树维 ...

  4. BZOJ2653 middle(二分答案+主席树)

    与中位数有关的题二分答案是很常用的trick.二分答案之后,将所有大于它的看成1小于它的看成-1,那么只需要判断是否存在满足要求的一段和不小于0. 由于每个位置是1还是-1并不固定,似乎不是很好算.考 ...

  5. [BZOJ2653]middle 主席树+二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2042  Solved: 1123[Submit][Status][Disc ...

  6. BZOJ2653 middle 【二分 + 主席树】

    题目 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c ...

  7. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

  8. Luogu2839 [国家集训队]middle 题解

    题目很好,考察对主席树的深入理解与灵活运用. 首先看看一般解决中位数的思路,我们二分一个 \(mid\),将区间中 \(\ge mid\) 的数置为 \(1\),小于的置为 \(-1\),然后求区间和 ...

  9. PKUSC2018训练日程(4.18~5.30)

    (总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...

随机推荐

  1. Myeclipse - 问题集 - specified vm install not found

    In Eclipse, click the ant file -- Run As -- External Tools Configuration and click on the JRE tab. S ...

  2. (译)学习如何构建自动化、跨浏览器的JavaScript单元测试

    作者:Philip Walton 译者:Yeaseon 原文链接:点此查看 译文仅供个人学习,不用于任何形式商业目的,转载请注明原作者.文章来源.翻译作者及链接,版权归原文作者所有. ___ 我们都知 ...

  3. javaweb(五)——Servlet开发(一)

    一.Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术. Sun公司在其API中提供了一个servlet接口,用户若想用发一个动态web资源(即开发一个Java程序向 ...

  4. VS中添加新项 数据选项卡下没有ADO.NET实体数据模型解决方案

    第一种:C:\ProgramData下面搜索EFTools找到你vs对应版本的EFTools.msi 先remove 然后再Install 重启电脑再看 第二种:如果意外地删除了 Visual Stu ...

  5. jenkins配置git+maven+Publish over SSH

    一.配置git 1.新建项目,源码管理选择git 2.Repository URL输入git目录 3.Credentials中选择新增凭据,凭据类型选择SSH,usename输入git,passphr ...

  6. TPO-11 C1 Use the gym pass

    TPO-11 C1 Use the gym pass 第 1 段 1.Listen to a conversation between a student and a university emplo ...

  7. Unity制作人物头像小图标和小地图

    人物头像的制作: 在场景中添加人物模型和环境模型 设置人物的layer为Player 在主摄像机的基础上,新建一个次摄像机并将摄像机镜头对准人物面部,调整至合适大小. 设置次摄像机 culling m ...

  8. Django学习总结- ③

    对象属性与继承关系: 对象属性 1. 显示属性 - 开发者手动定义的,直接看的到的 2. 隐式属性 - 系统根据需求,自动创建的对象 - objects 它是model.Manager对象 - 当我们 ...

  9. Spring Cloud(六):Hystrix 监控数据聚合 Turbine【Finchley 版】

    Spring Cloud(六):Hystrix 监控数据聚合 Turbine[Finchley 版]  发表于 2018-04-17 |  更新于 2018-05-07 |  上一篇我们介绍了使用 H ...

  10. 解析Java中final关键字的各种用法

    首先,我们可以从字面上理解一下final这个英文单词的中文含义:“最后的,最终的; 决定性的; 不可更改的:”.显然,final关键词如果用中文来解释,“不可更改的”更为合适.当你在编写程序,可能会遇 ...