题意: 给一个图,问能否给每个点分配一个实数值,使得存在一个数实数T,所有点满足:|value(i)| < T 且 u,v之间有边<=> |value(u)-value(v)| >= T。(注意等价符号)

思路:

由性质可得,两相邻点的分配的值的符号相反,于是先对原图做一个二分图判定,如果是非二分图,则无解。对二分图染色后,假设color[i]=1,则表示i点为正值,color[i]=-1,则表示为负。在已知每个点正负值的基础上,绝对值符号可以去掉,差分约束模型便出来了。这里有个细节,由于是实数,在遇到<和<=的时候比较麻烦,幸运的是我们可以用整数来代替实数,比如条件a < b可以看成是 a <= (b - 1),只要整数范围足够大即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <algorithm>
using namespace std;
 
const int T = 12345;
 
struct Graph {
    vector<vector<int> > G;
    void clear() { G.clear(); }
    void resize(int n) { G.resize(n + 2); }
    void add(int u, int v) { G[u].push_back(v); }
    vector<int> & operator [] (int u) { return G[u]; }
};
Graph G, E;
 
int n;
bool mark[345][345];
int vis[345];
 
void add(int u, int v, int w) {
    G.add(v, u);
    E.add(v, w);
}
 
queue<int> Q;
int D[345], cnt[345];
bool relax(int u, int v, int w) {
    if (D[u] > D[v] + w) {
        D[u] = D[v] + w;
        return true;
    }
    return false;
}
bool SPFA(int s) {
    while (!Q.empty()) Q.pop();
    memset(D, 0x3f, sizeof(D));
    memset(cnt, 0, sizeof(cnt));
    D[s] = 0;
    memset(vis, 0, sizeof(vis));
    vis[s] = 1;
    cnt[s] ++;
    Q.push(s);
    while (!Q.empty()) {
        int node = Q.front(); Q.pop();
        vis[node] = 0;
        int sz = G[node].size();
        for (int i = 0; i < sz; i ++) {
            int u = G[node][i];
            if (relax(u, node, E[node][i])) {
                if (!vis[u]) {
                    vis[u] = 1;
                    cnt[u] ++;
                    if (cnt[u] > n) return false;
                    Q.push(u);
                }
            }
        }
    }
    return true;
}
 
bool Color(int k, int c) {
    vis[k] = c;
    for (int i = 0; i < n; i ++) {
        if (mark[k][i]) {
            if (vis[i]) {
                if (vis[i] == vis[k]) return false;
            }
            else if (!Color(i, -c)) return false;
        }
    }
    return true;
}
 
bool check() {
    memset(vis, 0, sizeof(vis));
    for (int i = 0; i < n; i ++) {
        if (!vis[i]) {
            if (!Color(i, 1)) return false;
        }
    }
    G.clear();
    E.clear();
    G.resize(n);
    E.resize(n);
     // 添加一个源点编号为 n, 并从源点引出n条到每个点的有向边,边权为0
    for (int i = 0; i < n; i ++) {
        add(i, n, 0);
    }
    for (int i = 0; i < n; i ++) {
        for (int j = i + 1; j < n; j ++) {
            if (mark[i][j]) {
                if (vis[i] > 0) add(j, i, -T);
                else add(i, j, -T);
            }
            else {
                if (vis[i] > 0) add(i, j, T - 1);
                else add(j, i, T - 1);
            }
        }
    }
    n ++; // 多了一个源点
    return SPFA(n - 1);
}
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int T;
    cin >> T;
    while (T --) {
        cin >> n;
        memset(mark, 0, sizeof(mark));
        for (int i = 0; i < n; i ++) {
            char s[345];
            scanf("%s", s);
            for (int j = 0; j < n; j ++) {
                mark[i][j] = s[j] == '1';
            }
        }
        puts(check()? "Yes" "No");
    }
    return 0;
}

[hdu4598]二分图判定,差分约束的更多相关文章

  1. hdu 4598 Difference(奇圈判定+差分约束)

    这是通化邀请赛的题,当时比赛的时候还完全没想法呢,看来这几个月的训练还是有效果的... 题意要求(1) |ai| < T for all i   (2) (vi, vj) in E <=& ...

  2. poj 1201 Intervals(差分约束)

    做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...

  3. 【BZOJ4500】矩阵(差分约束)

    [BZOJ4500]矩阵(差分约束) 题面 BZOJ 然而权限题 题解 显然拆分行和列.不妨设这一行/列总共加减的值是\(p\),那么每一个限制就是两个数的和为一个特定的数.这样子不好做,反正是一个二 ...

  4. Halum UVA - 11478 差分约束

    输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...

  5. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  6. 最短路 & 差分约束 总结

     一.引例      1.一类不等式组的解 二.最短路       1.Dijkstra       2.图的存储       3.链式前向星       4.Dijkstra + 优先队列      ...

  7. [CCPC2019 哈尔滨] A. Artful Paintings - 差分约束,最短路

    Description 给 \(N\) 个格子区间涂色,有两类限制条件 区间 \([L,R]\) 内至少 \(K\) 个 区间 \([L,R]\) 外至少 \(K\) 个 求最少要涂多少个格子 Sol ...

  8. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  9. CF687A. NP-Hard Problem[二分图判定]

    A. NP-Hard Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. [HTML] <base>链接默认打开方式标签元素

    HTML 超链接(锚文本)默认打开方式与默认链接URL地址标签元素 一.语法与结构 <base target="_blank" href="http://www.l ...

  2. ViewDragHelper的点击事件处理

    在上一篇ViewDragHelper的介绍后,已经完成了自定义控件SwipeLayout的滑动,这一篇,我们来处理它的点击事件.之前提到过,它有两个子view,最开始显示的是surfaceLayout ...

  3. 详解数组分段和最大值最小问题(最小m段和问题)

    数组分段和最大值最小问题(最小m段和问题) 问题描述 给定n个整数组成的序列,现在要求将序列分割为m段,每段子序列中的数在原序列中连续排列.如何分割才能使这m段子序列的和的最大值达到最小? 清洁工:假 ...

  4. (一)PL/SQL简介

    PL/SQL PL/SQL也是一种程序语言,叫做过程化SQL语言(Procedural Language/SQL).PL/SQL是Oracle数据库对SQL语句的扩展.在普通SQL语句的使用上增加了编 ...

  5. QFileDialog::getOpenFileName() hangs

    https://forum.qt.io/topic/49209/qfiledialog-getopenfilename-hangs-in-windows-when-using-the-native-d ...

  6. 如何装双系统win10下装Ubuntu

    如何装双系统win10下装Ubuntu 第一步 制作启动盘 下载UItraISO软件.下载Ubuntu系统(地址:https://www.ubuntu.com/download).准备一个大于8g的U ...

  7. 在线教育项目-day05【课程分类管理-添加课程分类】

    1.引入依赖 之前测试EasyExcel已经引入过了 2.利用代码生成器生成结构 我们做的只需要更改代码生成器的数据库表即可 3.运行代码生成器 4.书写代码 1.controller @RestCo ...

  8. java集合的简单用法

    typora-root-url: iamge [TOC] 1.集合接口 1.1将集合的接口与实现分离 ​ 与现代的数据结构类库的常见情况一样,Java集合类库也将接口(interface)与实现(im ...

  9. 有关for循环的一些东西

    有的时候,不知道是因为学的有点浅显,还是脑袋有点懵,简单的循环语句都有点被绕糊涂了. 这种内外循环的,先是外循环一次,内循环全部,接着再外循环第二次,内循环全部,,,,,,,. 所以先是显示 0 4 ...

  10. lua 发送http请求

    lua发送http请求,luajit默认没有http.lua库,需要下载并存放到luajit对应目录. 一.下载http.lua和http_headers.lua库 参考:https://www.zi ...