New Distinct Substrings

题意

给出T个字符串,问每个字符串有多少个不同的子串。

思路

字符串所有子串,可以看做由所有后缀的前缀组成。

按照后缀排序,遍历后缀,每次新增的前缀就是除了 与上一个后缀的所有公共前缀 之外的前缀。

答案就是用总数-重复的 即\(\frac{n(n+1)}{2}-\sum_{i=1}^{n}height[i]\)

代码

// #include <bits/stdc++.h>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f; int sa[N],cnt[N],pos[N],rk[N],oldrk[N],ht[N],n,m;
char str[N];
bool cmp(int a,int b,int k)
{
return oldrk[a]==oldrk[b]&&oldrk[a+k]==oldrk[b+k];
}
void getsa()
{
memset(cnt,0,sizeof(cnt));
m=122;
for(int i=1; i<=n; i++)
++cnt[rk[i]=str[i]];
for(int i=1; i<=m; i++)
cnt[i]+=cnt[i-1];
for(int i=n; i; i--)
sa[cnt[rk[i]]--]=i;
for(int k=1; k<=n; k<<=1)
{
int num=0;
for(int i=n-k+1; i<=n; i++)
pos[++num]=i;
for(int i=1; i<=n; i++)
{
if(sa[i]>k)
pos[++num]=sa[i]-k;
}
memset(cnt,0,sizeof(cnt));
for(int i=1; i<=n; i++)
++cnt[rk[i]];
for(int i=1; i<=m; i++)
cnt[i]+=cnt[i-1];
for(int i=n; i; i--)
sa[cnt[rk[pos[i]]]--]=pos[i];
memcpy(oldrk,rk,sizeof(rk));
num=0;
for(int i=1; i<=n; i++)
rk[sa[i]]=cmp(sa[i],sa[i-1],k)?num:++num;
if(num==n)
break;
m=num;
}
for(int i=1; i<=n; i++)
rk[sa[i]]=i;
int k=0;
for(int i=1; i<=n; i++)
{
if(k)
--k;
while(str[i+k]==str[sa[rk[i]-1]+k])
++k;
ht[rk[i]]=k;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s",str+1);
n=strlen(str+1);
getsa();
ll sum=1LL*(n+1)*n/2;
for(int i=1; i<=n; i++)
sum-=ht[i];
printf("%lld\n",sum);
}
return 0;
}

【SPOJ – SUBST1】New Distinct Substrings 后缀数组的更多相关文章

  1. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  2. SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )

    题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...

  3. 后缀数组:SPOJ SUBST1 - New Distinct Substrings

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  4. SPOJ SUBST1 New Distinct Substrings(后缀数组 本质不同子串个数)题解

    题意: 问给定串有多少本质不同的子串? 思路: 子串必是某一后缀的前缀,假如是某一后缀\(sa[k]\),那么会有\(n - sa[k] + 1\)个前缀,但是其中有\(height[k]\)个和上一 ...

  5. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  6. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  7. spoj Distinct Substrings 后缀数组

    给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB  BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...

  8. Spoj SUBST1 New Distinct Substrings

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  9. spoj 694. Distinct Substrings 后缀数组求不同子串的个数

    题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...

随机推荐

  1. B - Bash and a Tough Math Puzzle CodeForces - 914D (线段树的巧妙应用)

    题目大意:当输入2时,将p处的点的值修改为x, 当输入1时,判断区间[L,R]的gcd是否几乎正确,几乎正确的定义是最多修改一个数,使得区间[L,R]的gcd为x. 题解:用线段树维护一个gcd数组, ...

  2. adb命令查看手机应用内存使用情况

    adb shell回车 一.procrank VSS >= RSS >= PSS >= USSVSS - Virtual Set Size 虚拟耗用内存(包含共享库占用的内存)是单个 ...

  3. Laravel项目Linux服务器部署

    laravel项目本地开发,一切正常.部署到服务器,首页都加载不出来,查了n多教程,各种方法姿势都试过了,还是不行. 功夫不负有心人,最后终于找到了问题所在,在此做个记录,铭记教训. 排查错误一定要: ...

  4. 【山外笔记-SVN命令】svnlook命令详解

    本文打印版问文件下载地址 [山外笔记-SVN命令]svnlook命令详解-打印版.pdf 一.命令简介 svnlook是检验Subversion版本库不同方面的命令行工具,不会对版本库有任何修改,只是 ...

  5. 使用 PyHamcrest 执行健壮的单元测试

    在 测试金字塔 的底部是单元测试.单元测试每次只测试一个代码单元,通常是一个函数或方法. 通常,设计单个单元测试是为了测试通过一个函数或特定分支的特定执行流程,这使得将失败的单元测试和导致失败的 bu ...

  6. jquery动态live绑定toggle事件

    $(".btn").live("click",function(){ $(this).toggle( function () { //事件 1 console. ...

  7. Jenkins(2)- 更改插件源为国内源

    如果想从头学起Jenkins的话,可以看看这一系列的文章哦 https://www.cnblogs.com/poloyy/category/1645399.html jenkins插件清华大学镜像地址 ...

  8. javascript-数组简单的认识

    一起组团(什么是数组) 我们知道变量用来存储数据,一个变量只能存储一个内容.假设你想存储10个人的姓名或者存储20个人的数学成绩,就需要10个或20个变量来存储,如果需要存储更多数据,那就会变的更麻烦 ...

  9. Android | 教你如何使用HwCameraKit接入相机人像模式

    目录 介绍 简介 关于本次CodeLab 你将建立什么 你会学到什么 你需要什么 申请Camera相关权限 集成HwCameraKit开放能力 步骤1 模式创建:获取CameraKit实例,创建人像模 ...

  10. Uber是一部无所不在的数字出行物联网

    "Uber化"是整合服务产业与智能车联网的知识经济,是数字时代展现个人化生活态度无可逆转的趋势,是新兴数字族群运用数字工具集体分享出行资源的平台. 搭过Uber的消费者,对其服务质 ...