题意简述

一个01序列由\(n_1\)个0和\(n_2\)个1组成,求最长连续0串长度不超过\(k_1\),最长连续1串长度不超过\(k_2\)的序列的方案总数

题解

状态

方案总数

变量

已经取了i个0,j个1,当前末尾连续串长度为k,末尾为l。

转移

\[f[i][j][k][l] =
\left\{
\begin{matrix}
\sum_{x=1}^{min(j,k_2)} f[i-[l=0]][j-[l=1]][x][l\ xor\ 1] && k = 1\\
f[i-[l=0]][j-[l=1]][k-1][l] && k > 1\\
\end{matrix}
\right.
\]

 注:\([i=1]\)意为在\(i=1\)时值为\(1\),否则值为\(0\)。

代码

#include <cstdio>
#include <algorithm> using namespace std; const long long MOD = 100000000; namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar_();
if (ch == '-') zf = -1, ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x * zf;
}
void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + '0');
}
} using namespace fast_IO; long long f[105][105][11][2]; int main(){
int n1 = read(), n2 = read(), k1 = read(), k2 = read();
for (int i = 1; i <= k1; ++i) f[i][0][i][0] = 1;
for (int i = 1; i <= k2; ++i) f[0][i][i][1] = 1;
for (int i = 1; i <= n1; ++i)
for (int j = 1; j <= n2; ++j){
for (int k = 1; k <= min(j, k2); ++k)
(f[i][j][1][0] += f[i - 1][j][k][1]) %= MOD;
for (int k = 1; k <= min(i, k1); ++k)
(f[i][j][1][1] += f[i][j - 1][k][0]) %= MOD;
for (int k = 2; k <= min(i, k1); ++k)
(f[i][j][k][0] += f[i - 1][j][k - 1][0]) %= MOD;
for (int k = 2; k <= min(j, k2); ++k)
(f[i][j][k][1] += f[i][j - 1][k - 1][1]) %= MOD;
}
long long ans = 0;
for (int i = 1; i <= 10; ++i)
(ans += f[n1][n2][i][0] + f[n1][n2][i][1]) %= MOD;
printf("%lld", ans);
return 0;
}

[CF118D]Caesar's Legions 题解的更多相关文章

  1. Caesar's Legions(三维dp)

    Caesar's Legions Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u S ...

  2. Codeforces118D Caesar's Legions(DP)

    题目 Source http://codeforces.com/problemset/problem/118/D Description Gaius Julius Caesar, a famous g ...

  3. codeforces118D. Caesar's Legions

    地址:http://www.codeforces.com/problemset/problem/118/D 题目: Gaius Julius Caesar, a famous general, lov ...

  4. 【Codeforces 118B】Caesar's Legions

    [链接] 我是链接,点我呀:) [题意] 序列中不能连续出现k1个以上的1以及不能连续出现k2个以上的2,然后一共有n1个1以及n2和2,要求这n1+n2个数字都出现. 问序列有多少种可能. [题解] ...

  5. Codeforces 118 D. Caesar's Legions (dp)

    题目链接:http://codeforces.com/contest/118/problem/D 有n个步兵和m个骑兵要排成一排,其中连续的步兵不能超过k1个,连续的骑兵不能超过k2个. dp[i][ ...

  6. D. Caesar's Legions 背包Dp 递推DP

    http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k ...

  7. 【dp】D. Caesar's Legions

    https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/D [题意]给定n1个A,n2个B,排成一排,要求A最多能连续k1个紧挨着,B最多 ...

  8. Caesar's Legions(CodeForces-118D) 【DP】

    题目链接:https://vjudge.net/problem/CodeForces-118D 题意:有n1名步兵和n2名骑兵,现在要将他们排成一列,并且最多连续k1名步兵站在一起,最多连续k2名骑兵 ...

  9. D. Caesar's Legions

    \(状态很容易设计\) \(设dp[i][j][u][v]表示放了i个1兵种和j个2兵种\) \(然后u不会0说明末尾放了连续u个1兵种,v不为0说明末尾放了连续v个2兵种\) #include &l ...

随机推荐

  1. 写出java.lang.Object类的六个常用方法

    java是面向对象的语言,而Object类是java中所有类的顶级父类(根类). 每个类都使用Object类作为超类,所有对象(包括数组)都实现这个类的方法,即使一个类没有用extends明确指出继承 ...

  2. Flink初探-为什么选择Flink

    本文主要记录一些关于Flink与storm,spark的区别, 优势, 劣势, 以及为什么这么多公司都转向Flink. What Is Flink 一个通俗易懂的概念: Apache Flink 是近 ...

  3. <<C++ Primer>> 第一章 开始 术语表

    术语表 第 1 章 开始 参数(实参, argument): 向函数传递值    赋值(assignment): 抹去一个对象当前值一个新值取代之    缓冲区(buffer): 一个存储区域, 用于 ...

  4. Linux命令基础#1

    系统基础 三大部件:CPU 内存 IO 1.CPU :运算器 控制器 存储器 2.内存:CPU的数据只能从内存读取,且内存数据有易失性(页面) 3.IO:控制总线 数据总线(一个IO) OS原理: O ...

  5. 链接Caffe,程序报错应用程序无法正常启动(0xc000007b)

    目录 背景 Debug 解决办法 原因(猜想) 总结 重点是介绍了一种排查这个问题的方法. 背景 Windows 下, Caffe 单独编译成库并且安装在路径 Caffe_DIR, 动态链接库 Caf ...

  6. gym102215题解

    A Rooms and Passages 题意 给n个数,从起点出发,一直往右走,遇到一个前面出现过其相反数的正数就停下,问对于每个起点都能走多少步. 分析 倒着递推,如果起点是正数,那么肯定可以走, ...

  7. springboot学习2

    项目导入eclipse 先检测是否安装有gradle插件 然后点击  finish 按钮 hello world实例 Application.java package com.example.demo ...

  8. php正则替换非站内链接 替换zencart描述内的非本站链接

    php正则替换非站内链接 <?php //要替换的文本,比如产品描述中的文字 header("content-Type: text/html; charset=utf-8") ...

  9. Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  10. 字典树——动态&&静态

    静态---时间快 /************************************************************************* > File Name: ...