test20181019 B君的第一题
题意


分析
考场做法同标解。
画图模拟分析发现,无论操作顺序怎样,操作数的奇偶性是不变的。
所以等同求出,以每点为根的操作数奇偶性。
用\(f(x)\)表示x及其子树中的边,包括x到它fa的边,将他们全部置0的操作数。
\(f(x)\)与\(\sum_{y \in son(x)}f(y)\)的奇偶性有关,但是分4种情况讨论又可以发现,其实f(x)只跟x到fa这条边有关。
那么每点换成根之后,总操作数的奇偶性只跟根节点周围的边的奇偶性有关,于是可以\(O(n)\)做。
代码
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#define rg register
#define il inline
#define co const
#pragma GCC optimize ("O0")
using namespace std;
template<class T> il T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;
const int MAXN=1e5+7;
int val[MAXN];
int main()
{
freopen("hohhot.in","r",stdin);
freopen("hohhot.out","w",stdout);
int n;
read(n);
for(int i=1;i<n;++i)
{
int x,y,w;
read(x);read(y);read(w);
val[x]+=w;
val[y]+=w;
}
for(int i=1;i<=n;++i)
{
printf("%d\n",val[i]%2);
}
// fclose(stdin);
// fclose(stdout);
return 0;
}
test20181019 B君的第一题的更多相关文章
- test20181017 B君的第一题
题意 分析 考场做法 对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0. 具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都 ...
- test20181018 B君的第一题
题意 分析 考场爆零做法 考虑dp,用\(f(i,j,0/1)\)表示i及其子树中形成j个边连通块的方案数,其中i是否向外连边. \(O(n^3)\),转移方程太复杂就打挂了. #include< ...
- test20181016 B君的第一题
题意 分析 考场爆零做法 考虑位数少的一定更小,高位小的一定更少. 然后计算一定位数下不同数字的个数,然后从高到低依次确定数位. 特例:如果确定的高位的后缀出现了x,那么要把x调整到后缀去,这样一定更 ...
- test20181020 B君的第一题
题意 分析 二次剩余问题. x,y相当于二次方程 \[ x^2-bx+c=0 \mod{p} \] 的两根. 摸意义下的二次方程仍然考虑判别式\(\Delta=b^2-4c\). 它能开根的条件是\( ...
- test20181019 B君的第二题
题意 分析 快速子集和变换以及快速超集和变换的裸题. 用\(f(s)\)表示集合s的方案数,初始化为输入中s出现的次数. 做一遍快速子集和变换,此时f(s)表示s及其子集在输入中出现的次数. 对所有f ...
- test20181019 B君的第三题
题意 B 君的第三题(urumqi) 题目描述 风雨如晦,鸡鸣不已. B 君最近在研究自己的学长都在做什么工作,每个学长属于一个公司. B 君会获得一些信息,比如x 和y 在相同公司,x 和y 在不同 ...
- [算法 笔记]2014年去哪儿网 开发笔试(续)第一题BUG修正
上一篇的blog地址为:http://www.cnblogs.com/life91/p/3313868.html 这几天又参加了一个家公司的笔试题,在最后的编程题中竟然出现了去哪儿网开发的第一题,也就 ...
- 《学习OpenCV》练习题第五章第一题ab
这道题是载入一幅带有有趣纹理的图像并用不同的模板(窗口,核)大小做高斯模糊(高斯平滑),然后比较用5*5大小的窗口平滑图像两次和用11*11大小的窗口平滑图像一次是否接近相同. 先说下我的做法,a部分 ...
- 《学习OpenCV》练习题第四章第一题b&c
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
随机推荐
- 牛客国庆集训派对Day5 Solution
A 璀璨光滑 留坑. B 电音之王 蒙特马利大数乘模运算 #include <bits/stdc++.h> using namespace std; typedef long ...
- "字节跳动杯"2018中国大学生程序设计竞赛-女生专场 Solution
A - 口算训练 题意:询问 $[L, R]$区间内 的所有数的乘积是否是D的倍数 思路:考虑分解质因数 显然,一个数$x > \sqrt{x} 的质因子只有一个$ 那么我们考虑将小于$\sqr ...
- c# ArrayList 的排序问题!
2009-01-19 20:10 c# ArrayList 的排序问题! c# ArrayList 的排序问题! 我看见网上有人用IComparer接口实现ArrayLIst 的排序问题 ,于是自己写 ...
- KVM入门
KVM KVM(Kernel-based Virtual Machine)是众多虚拟化技术之一,它是Linux内核中的一个模块,该模块依赖于CPU,如果CPU支持虚拟化,那么该模块才可以被加载.KVM ...
- python使用set来去重碰到TypeError: unhashable type
新版:Python 的 unhashable type 错误分析及解决 python使用set来去重是一种常用的方法. 一般使用方法如下: # int a = [1, 2, 3, 4, 5, 1, 2 ...
- CSS3 Flex Box(弹性盒子)
CSS3 Flex Box(弹性盒子) 一.简介 弹性盒子是 CSS3 的一种新的布局模式. CSS3 弹性盒( Flexible Box 或 flexbox),是一种当页面需要适应不同的屏幕大小以及 ...
- MySQL 学习笔记整理
1. 创建表 CREATE TABLE item( ID INT(6) NOT NULL AUTO_INCREMENT, Name CHAR(32) NOT NULL, Price DECI ...
- reason: image not found的解决方案
在制作framework时遇到真机运行时导致的reason: image not found允许崩溃的问题,下面是我的解决方案: 首先我们分析一下出现这种情况的原因,原因就是framework找不到镜 ...
- Python学习札记(四十二) IO 2
参考:StringIO和BytesIO NOTE 1.StringIO: 顾名思义就是在内存中读写str. #!/usr/bin/env python from io import BytesIO a ...
- hdu1527威佐夫博弈
参考博客 https://hrbust-acm-team.gitbooks.io/acm-book/content/game_theory/wei_zuo_fu_bo_yi.html 满足 ,后手必胜 ...