test20181019 B君的第一题
题意
分析
考场做法同标解。
画图模拟分析发现,无论操作顺序怎样,操作数的奇偶性是不变的。
所以等同求出,以每点为根的操作数奇偶性。
用\(f(x)\)表示x及其子树中的边,包括x到它fa的边,将他们全部置0的操作数。
\(f(x)\)与\(\sum_{y \in son(x)}f(y)\)的奇偶性有关,但是分4种情况讨论又可以发现,其实f(x)只跟x到fa这条边有关。
那么每点换成根之后,总操作数的奇偶性只跟根节点周围的边的奇偶性有关,于是可以\(O(n)\)做。
代码
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#define rg register
#define il inline
#define co const
#pragma GCC optimize ("O0")
using namespace std;
template<class T> il T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;
const int MAXN=1e5+7;
int val[MAXN];
int main()
{
freopen("hohhot.in","r",stdin);
freopen("hohhot.out","w",stdout);
int n;
read(n);
for(int i=1;i<n;++i)
{
int x,y,w;
read(x);read(y);read(w);
val[x]+=w;
val[y]+=w;
}
for(int i=1;i<=n;++i)
{
printf("%d\n",val[i]%2);
}
// fclose(stdin);
// fclose(stdout);
return 0;
}
test20181019 B君的第一题的更多相关文章
- test20181017 B君的第一题
题意 分析 考场做法 对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0. 具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都 ...
- test20181018 B君的第一题
题意 分析 考场爆零做法 考虑dp,用\(f(i,j,0/1)\)表示i及其子树中形成j个边连通块的方案数,其中i是否向外连边. \(O(n^3)\),转移方程太复杂就打挂了. #include< ...
- test20181016 B君的第一题
题意 分析 考场爆零做法 考虑位数少的一定更小,高位小的一定更少. 然后计算一定位数下不同数字的个数,然后从高到低依次确定数位. 特例:如果确定的高位的后缀出现了x,那么要把x调整到后缀去,这样一定更 ...
- test20181020 B君的第一题
题意 分析 二次剩余问题. x,y相当于二次方程 \[ x^2-bx+c=0 \mod{p} \] 的两根. 摸意义下的二次方程仍然考虑判别式\(\Delta=b^2-4c\). 它能开根的条件是\( ...
- test20181019 B君的第二题
题意 分析 快速子集和变换以及快速超集和变换的裸题. 用\(f(s)\)表示集合s的方案数,初始化为输入中s出现的次数. 做一遍快速子集和变换,此时f(s)表示s及其子集在输入中出现的次数. 对所有f ...
- test20181019 B君的第三题
题意 B 君的第三题(urumqi) 题目描述 风雨如晦,鸡鸣不已. B 君最近在研究自己的学长都在做什么工作,每个学长属于一个公司. B 君会获得一些信息,比如x 和y 在相同公司,x 和y 在不同 ...
- [算法 笔记]2014年去哪儿网 开发笔试(续)第一题BUG修正
上一篇的blog地址为:http://www.cnblogs.com/life91/p/3313868.html 这几天又参加了一个家公司的笔试题,在最后的编程题中竟然出现了去哪儿网开发的第一题,也就 ...
- 《学习OpenCV》练习题第五章第一题ab
这道题是载入一幅带有有趣纹理的图像并用不同的模板(窗口,核)大小做高斯模糊(高斯平滑),然后比较用5*5大小的窗口平滑图像两次和用11*11大小的窗口平滑图像一次是否接近相同. 先说下我的做法,a部分 ...
- 《学习OpenCV》练习题第四章第一题b&c
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
随机推荐
- Codeforces Round #523 (Div. 2) Solution
A. Coins Water. #include <bits/stdc++.h> using namespace std; int n, s; int main() { while (sc ...
- linux下抓包工具tcpdump详解
本文转自:http://www.cnblogs.com/ggjucheng/archive/2012/01/14/2322659.html 简介 用简单的话来定义tcpdump,就是:dump the ...
- excel文件与txt文件互转,并且把excel里的数据导入到oracle中
一.excel文件转换成txt文件的步骤 a.首先要把excel文件转换成txt文件 1.Excel另存为中已经包含了TXT格式,所以我们可以直接将Excel表格另存为TXT格式,但是最后的效果好像不 ...
- BZOJ2209: [Jsoi2011]括号序列
传送门 splay练习. 考虑把括号序列转化成类似于区间最大/最小值的情况. 显然我们可以知道括号序列消完的情况肯定是$a$个)和$b$个(,那么把这些括号全部合法化的代价显然就是$\frac{a+1 ...
- 20145307陈俊达《网络对抗》逆向及Bof基础
20145307陈俊达<网络对抗>逆向及Bof基础 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任 ...
- 20145211黄志远 《网络对抗》Exp7 网络欺诈技术防范
20145211黄志远 <网络对抗>Exp7 网络欺诈技术防范 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体有(1)简单应用SET工具建立冒名网站(2) ...
- 20162314 Experiment 4 - Graph
Experiment report of Besti course:<Program Design & Data Structures> Class: 1623 Student N ...
- Xshell5 访问虚拟机Ubuntu16.04
1.Ubuntu安装telnet 安装openbsd-inetd sudo apt-get install openbsd-inetd 安装telnetd sudo apt-get install t ...
- vue中动态添加div
知识点:vue中动态添加div节点,点击添加,动态生成div,点击删除,删除对应的div,其中数组的长度是动态改变的,如在from表单中应用,直接在提交方法中,获得list,获取所填的元素即可 效果: ...
- win10下安装lxml
最近在windows平台下开发,用的python3.6,安装lxml遇到点问题,现已解决.特意记下,以供以后再遇到. 解决方法: 1.打开cmd终端,查看pip版本,pip --version,如不是 ...