Problem Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those
digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.
For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12.
Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit
and also the digital root of 39.
 
Input
The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
 
Output
For each integer in the input, output its digital root on a separate line of the output.
 
Sample Input
24
39
0
 
Sample Output
6
3
--------------------------------------------------------------------------------------------------------
一个数和它各位数的和同模。
证明:

首先n=d1+10d2+…+10m-1dm。则n= 9d2+…+(10m-1-1)dm+ d1+d2+…+dm,把所有的位数相加结果就是9的倍数取余,余数为n’=d1+d2+…+dm,所以n与n’同模。最终,经过不断取余,n会化为个位数。

${\rm{x}} = \sum\limits_{i = 1}^n {{d_i}{{10}^i}} $

${10^i} \equiv {1^i} \equiv 1$

$x = \sum\limits_{i = 1}^n {{d_i}(\bmod 9)} $

设${\rm{x}} = \sum\limits_{i = 1}^n {{d_i}} $

f(x)=x(mod 9)

f(f(x)) = f(x) = x(mod 9)

完整的公式为

${\rm{digit\_root(n) = }}\left\{ \begin{array}{l}
0,if(n = 0)\\
9,if(n \ne 0,n \equiv 0\bmod 9)\\
n\bmod 9,if(n \ne 0\bmod 9)
\end{array} \right.$

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#define SIZE 100000
char n[SIZE];
int main()
{
int ans, length;
while (scanf("%s", n)== 1 && n[0] != '0')
{
ans = 0;
length = strlen(n);
for (int i = 0; i < length; i++)
{
ans += n[i] - '0';
} printf("%d\n", ans%9==0?9:ans%9);
}
return 0;
}

  

ACM1013:Digital Roots的更多相关文章

  1. 【九度OJ】题目1124:Digital Roots 解题报告

    [九度OJ]题目1124:Digital Roots 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1124 题目描述: T ...

  2. POJ 1519:Digital Roots

    Digital Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25766   Accepted: 8621 De ...

  3. 九度OJ 1124:Digital Roots(数根) (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2963 解决:1066 题目描述: The digital root of a positive integer is found by s ...

  4. 1013:Digital Roots

    注意:大数要用字符串表示! sprintf:字符串格式化命令 主要功能:将格式化的数据写入某个字符串缓冲区 头文件:<stdio.h> 原型 int sprintf( char *buff ...

  5. HDU - 1310 - Digital Roots

    先上题目: Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  6. Digital Roots 分类: HDU 2015-06-19 22:56 13人阅读 评论(0) 收藏

    Digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. Digital Roots:高精度

    C - Digital Roots Description The digital root of a positive integer is found by summing the digits ...

  8. 解题报告:hdu1013 Digital Roots

    2017-09-07 22:02:01 writer:pprp 简单的水题,但是需要对最初的部分进行处理,防止溢出 /* @theme: hdu 1013 Digital roots @writer: ...

  9. Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. Windows事件--重复事件检测

    监视器--Windows事件--重复事件检测--计时器重置: 自动重置计时器:指定等待时间10分钟,则在10分钟后自动关闭该警报,更改状态为 正常(绿色) 检测事件1,事件3重置计数器状态,2分钟内检 ...

  2. December 29th 2016 Week 53rd Thursday

    The true nobility is in being superior to your previous self. 真正的高贵在于超越过去的自己. It is really difficult ...

  3. 面向对象的JavaScript --- 原型模式和基于原型继承的JavaScript对象系统

    面向对象的JavaScript --- 原型模式和基于原型继承的JavaScript对象系统 原型模式和基于原型继承的JavaScript对象系统 在 Brendan Eich 为 JavaScrip ...

  4. GPS-Graph Processing System Graph Coloring算法分析 (三)

        HamaWhite 原创,转载请注明出处!欢迎大家增加Giraph 技术交流群: 228591158     Graph coloring is the problem of assignin ...

  5. MAC下常用命令的中文帮助文档(man) 出现错误

    MacdeMacBook-Pro:Desktop mac$ tar -xf manpages-zh-1.5.2.tar.bz2 MacdeMacBook-Pro:~ root# cd /Users/m ...

  6. Kali-linux破解纯文本密码工具mimikatz

    mimikatz是一款强大的系统密码破解获取工具.该工具有段时间是作为一个独立程序运行.现在已被添加到Metasploit框架中,并作为一个可加载的Meterpreter模块.当成功的获取到一个远程会 ...

  7. No.4 - 3D 空间的卡片翻转动效

    参考 ①张鑫旭http://www.zhangxinxu.com/wordpress/2012/09/css3-3d-transform-perspective-animate-transition/ ...

  8. Controller如何写的更简化

    Controller层相当于MVC中的C,也是安卓或者前端请求的接口. 首先说Controller为什么需要写的更加简化? 第一.Controller是不能复用的: 第二.即便是将Controller ...

  9. vue项目 webpack打包后,图片路径是绝对路径

    vue项目,使用webpack打包,虽然在全局把路径改成了相对的路径,但是图片引用的路径还是异常的,解决办法如下: 1.config文件夹下index.js中: assetsPublicPath:&q ...

  10. 【Git】将项目下的.git目录隐藏

    将项目下的.git目录隐藏 在apache配置文件httpd.conf中添加配置: <Directory "${INSTALL_DIR}/www/mypro/.git"> ...