Description

求有多少棵大小为n的深度为h的二叉树。(树根深度为0;左右子树有别;答案对1000000007取模)

Input

第一行一个整数T,表示数据组数。
以下T行,每行2个整数n和h。

Output

共T行,每行一个整数表示答案(对1000000007取模)

Sample Input

2
2 1
3 2

Sample Output

2
4

HINT

对于100%的数据,1<=n<=600,0<=h<=600,1<=T<=10

Solution

$f[i][j]$表示树大小为$i$,最深深度小于等于$j$的二叉树数量。
$f[i][j]=\sum_{k=1}^{i}f[k-1][j-1]*f[i-k][j-1]$
多组数据用记搜

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (609)
#define MOD (1000000007)
using namespace std; int T,n,h,f[N][N],ans; int DP(int sz,int hi)
{
if (sz==) return ;
if (hi==) return sz==;
if (f[sz][hi]!=-) return f[sz][hi];
f[sz][hi]=;
for (int i=; i<=sz; ++i)
(f[sz][hi]+=1ll*DP(i-,hi-)*DP(sz-i,hi-)%MOD)%=MOD;
return f[sz][hi];
} int main()
{
memset(f,-,sizeof(f));
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&h);
ans=DP(n,h);
if (h>) ans-=DP(n,h-);
printf("%d\n",(ans%MOD+MOD)%MOD);
}
}

BZOJ3769:BST again(记忆化搜索DP)的更多相关文章

  1. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  2. HDU 1078 FatMouse and Cheese 记忆化搜索DP

    直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...

  3. 记忆化搜索 dp学习~2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...

  4. 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】

    Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...

  5. hdu1331&&hdu1579记忆化搜索(DP+DFS)

    这两题是一模一样的``` 题意:给了一系列递推关系,但是由于这些递推很复杂,所以递推起来要花费很长的时间,所以我要编程序在有限的时间内输出答案. w(a, b, c): 如果a,b,c中有一个值小于等 ...

  6. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  7. hdu 4960 记忆化搜索 DP

    Another OCD Patient Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  8. HNU OJ10086 挤挤更健康 记忆化搜索DP

    挤挤更健康 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 339, A ...

  9. BZOJ1048:[HAOI2007]分割矩阵(记忆化搜索DP)

    Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个), 这样分割了(n-1)次后,原矩阵被分割成 ...

随机推荐

  1. Excel的vlookup函数的用法

    VLOOKUP函数用于搜索指定区域内首列满足条件的元素,确定待检测单元格在区域中的行序号,再进一步返回选定单元格的值. 为了讲解的需要,特制作如图所示的表格.当然,大家也可以根据自己的实际情况设计合适 ...

  2. DataGridView 获取当前单元格

    获取DataGridview控件中的当前单元格,是通过DataGridview的Rows属性和Column属性的索引来取得的,他们的索引都是从0开始的. Private void datagridvi ...

  3. qq iOS环境配置及调用

    1.下载官方iOS sdk:地址:相关文档 2. 将iOS SDK中的TencentOpenAPI.framework和TencentOpenApi_IOS_Bundle.bundle文件拷贝到应用开 ...

  4. 撩课-Web大前端每天5道面试题-Day2

    1.伪类与伪元素的区别? 1) 定义区别 伪类 伪类用于选择DOM树之外的信息,或是不能用简单选择器进行表示的信息. 前者包含那些匹配指定状态的元素,比如:visited,:active:后者包含那些 ...

  5. 撩课-Java每天10道面试题第6天

    51.HashMap的实现原理 HashMap的主干是一个Entry数组. Entry是HashMap的基本组成单元, 每一个Entry包含一个key-value键值对. HashMap基于hashi ...

  6. Spring与Web

    一.定义页面及Servlet 在jsp页面加入以下,避免乱码 <meta charset="utf-8"> <body> <form action=& ...

  7. tomcat-虚拟目录的映射

    虚拟目录的映射 1.新建 ${tomcat安装目录}\conf\Catalina\localhost\xxx.xml 文件. 文件内容: <Context  path="/xxx&qu ...

  8. 创建Web项目运行时出小错误及解决方法

    1.目录结构 2.各文件内容 index.jsp <%@ page contentType="text/html;charset=UTF-8" language=" ...

  9. python中类变量和实例变量

    1. 类变量和实例变量 在Python Tutorial中对于类变量和实例变量是这样描述的: Generally speaking, instance variables are for data u ...

  10. 洛谷P5057 [CQOI2006]简单题(线段树)

    题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...