题意

题目链接

给出一棵树,每个节点有权值,选出\(k\)个联通块,最大化

\[\frac{\sum_{i \in S} a_i}{k}
\]

Sol

结论:选出的\(k\)个联通块的大小是一样的且都等于最大联通块的大小

证明:因为我们是在保证分数最大的情况下才去最大化\(k\),一个很经典的结论是单独选择一个权值最大的联通块得到的分数一定是最大的,然后我们这时我们才去考虑最大化\(k\)

那么思路就很清晰了,先一遍dfs dp出最大联通块,然后再一遍dfs从下往上删就行了

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 3e5 + 10, INF = 1e18;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN], mx[MAXN], ans = -INF, num;
#define siz(v) ((int)v.size())
vector<int> v[MAXN];
void dfs(int x, int fa) {
mx[x] = a[x];
for(int i = 0; i < siz(v[x]); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x);
mx[x] = max(mx[x], mx[x] + mx[to]);
}
ans = max(ans, mx[x]);
}
void dfs2(int x, int fa) {
mx[x] = a[x];
for(int i = 0; i < siz(v[x]); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs2(to, x);
mx[x] = max(mx[x], mx[x] + mx[to]);
}
if(mx[x] == ans) num++, mx[x] = 0;
}
signed main() {
#ifndef ONLINE_JUDGE
//freopen("a.in", "r", stdin);freopen("a.out", "w", stdout);
#endif
N = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
//printf("%I64d\n", ans);
memset(mx, 0, sizeof(mx));
dfs2(1, 0);
cout << ans * num << " " << num;
return 0;
}

cfE. Ehab and a component choosing problem(贪心)的更多相关文章

  1. Codeforces 1088E Ehab and a component choosing problem

    Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...

  2. Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem

    E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...

  3. 【数学/贪心/DP】【CF1088E】 Ehab and a component choosing problem

    Description 给定一棵 \(n\) 个节点的树,点有点权 \(a_u\),可能为负.现在请你在树上找出 \(k~(1~\leq~k~\leq~n)\) 个不相交集合,使得每个集合中的每对点都 ...

  4. cf1088E Ehab and a component choosing problem (树形dp)

    题意(考试时看错了对着样例wa了好久..):从树上选k个连通块,使得权值的平均值最大的基础上,选的块数最多 如果不考虑块数最多的限制,肯定是只选一个权值最大的块是最好的 然后只要看这个权值最大的块有多 ...

  5. Codeforces Round #525 (Div. 2) E. Ehab and a component choosing problem 数学

    题意:给出树 求最大的sigma(a)/k k是选取的联通快个数   联通快不相交 思路: 这题和1个序列求最大的连续a 的平均值  这里先要满足最大平均值  而首先要满足最大  也就是一个数的时候可 ...

  6. Codeforces Round #525 E - Ehab and a component choosing problem

    题目大意: 在一棵树中 选出k个联通块 使得 这k个联通块的点权总和 / k 最大 并且这k个联通块不相互覆盖(即一个点只能属于一个联通块) 如果有多种方案,找到k最大的那种 给定n 有n个点 给定n ...

  7. CF D. Ehab and the Expected XOR Problem 贪心+位运算

    题中只有两个条件:任意区间异或值不等于0或m. 如果只考虑区间异或值不等于 0,则任意两个前缀异或值不能相等. 而除了不能相等之外,还需保证不能出现任意两个前缀异或值不等于m. 即 $xor[i]$^ ...

  8. Codeforces Round #525 (Div. 2)D. Ehab and another another xor problem

    D. Ehab and another another xor problem 题目链接:https://codeforces.com/contest/1088/problem/D Descripti ...

  9. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

随机推荐

  1. Leetcode 88 合并两个有序数组 Python

    合并两个有序数组 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组. 说明: 初始化 nums1 和 nums2 的元素数量分 ...

  2. VS2015编译器按F6不能够重新生成

    工具-->选项-->环境-->键盘-->应用以下其他键盘映射方案,下拉选择 Visual C# 2005

  3. open/read/write/close

    open 函数 函数原型 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int o ...

  4. 使用二叉搜索树实现一个简单的Map

    之前看了刘新宇大大的<算法新解>有了点收获,闲来无事,便写了一个二叉搜索树实现的Map类. java的Map接口有很多不想要的方法,自己定义了一个 public interface IMa ...

  5. [转] gitlab 的 CI/CD 配置管理

    [From] http://blog.51cto.com/flyfish225/2156602 gitlab 的 CI/CD 配置管理 (二) 标签(空格分隔):运维系列 一:gitlab CI/CD ...

  6. [DPF] DPF 常见的问题

    问题一: SQL6031N  Error in the db2nodes.cfg file at line number "5".  Reason code "12&qu ...

  7. 全网最详细的Git学习系列之介绍各个Git图形客户端(Windows、Linux、Mac系统皆适用ing)(图文详解)

    不多说,直接上干货! 一.TortoiseGit - The coolest Interface to Git Version Control TortoiseGit 是 TortoiseSVN 的  ...

  8. jmeter笔记

    Jmeter性能测试 入门 Jmeter 录制脚本:使用一个叫badbody的工具录制脚步供jmeter使用,http://www.badboy.com.au/:也可以用jmeter来录制 Jmete ...

  9. box-shadow向元素添加阴影效果

    div{ box-shadow: 10px 10px 5px #888888;} 语法:box-shadow: h-shadow v-shadow blur spread color inset; 值 ...

  10. Linux 命令学习之cd

    功能说明: cd 命令是 linux 最基本的命令语句,其他的命令都会依赖与 cd 命令.因此学好 cd 命令是必须的. 语 法:cd [目的目录] 补充说明:cd指令可让用户在不同的目录间切换,需要 ...