BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)
原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了。做法与可行流类似。
因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 310
#define M 20010
#define inf 100000000
#define S 0
#define T 301
int n,p[N],t=-,pre[N],q[N],d[N],degree[N],ans=;
bool flag[N];
struct data{int to,nxt,cap,flow,cost;
}edge[M];
void addedge(int x,int y,int z,int cost)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,edge[t].cost=cost,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,edge[t].cost=-cost,p[y]=t;
}
int inc(int &x){x++;if (x>n+) x-=n+;return x;}
bool spfa()
{
memset(d,,sizeof(d));d[S]=;
memset(flag,,sizeof(flag));
int head=,tail=;q[]=S;
do
{
int x=q[inc(head)];flag[x]=;
for (int i=p[x];~i;i=edge[i].nxt)
if (d[x]+edge[i].cost<d[edge[i].to]&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+edge[i].cost;
pre[edge[i].to]=i;
if (!flag[edge[i].to])
{
q[inc(tail)]=edge[i].to;
flag[edge[i].to]=;
}
}
}while (head!=tail);
return d[T]<inf;
}
void ekspfa()
{
while (spfa())
{
int v=inf;
for (int i=T;i!=S;i=edge[pre[i]^].to)
v=min(v,edge[pre[i]].cap-edge[pre[i]].flow);
for (int i=T;i!=S;i=edge[pre[i]^].to)
ans+=v*edge[pre[i]].cost,edge[pre[i]].flow+=v,edge[pre[i]^].flow-=v;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3876.in","r",stdin);
freopen("bzoj3876.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int k=read();
if (i>) addedge(i,,inf,);
while (k--)
{
int x=read(),y=read();
addedge(i,x,inf,y);
degree[i]++;degree[x]--;
ans+=y;
}
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(i,T,degree[i],);
else if (degree[i]<) addedge(S,i,-degree[i],);
ekspfa();
cout<<ans;
return ;
}
BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)的更多相关文章
- BZOJ3876 [Ahoi2014&Jsoi2014]支线剧情 【有上下界费用流】
题目 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费最少 ...
- BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流
题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...
- [bzoj3876][AHOI2014]支线剧情——上下界费用流
题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...
- BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]
3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...
- bzoj3876: [Ahoi2014&Jsoi2014]支线剧情
题意:给一幅图,从1开始,每条边有边权最少走一遍,可以在任意点退出,问最小花费 题解:上下界费用流,每个边都流一遍,然后为了保证流量平衡,新建源点汇点,跑费用流把流量平衡 /************* ...
- BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)
题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...
- [AHOI2014&&JSOI2014][bzoj3876] 支线剧情 [上下界费用流]
题面 传送门 思路 转化模型:给一张有向无环图,每次你可以选择一条路径走,花费的时间为路径上边权的总和,问要使所有边都被走至少一遍(可以重复),至少需要花费多久 走至少一遍,等价于覆盖这条边 也就是说 ...
- bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)
传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...
- 【BZOJ3876】[AHOI2014&JSOI2014] 支线剧情(无源汇有上下界网络流)
点此看题面 大致题意: 有一张\(DAG\),经过每条边有一定时间,从\(1\)号点出发,随时可以返回\(1\)号点,求经过所有边的最短时间. 无源汇有上下界网络流 这是无源汇有上下界网络流的板子题. ...
随机推荐
- Android 解决布局无法对齐的情况
是这样的,在为app制作titlebar或者使用RadioGroup设置布局的的weight属性后,会出现有些机型的手机布局无法居中的问题. 在遇到这类问题时,大部分的原因就是因为没有设置控件的属性: ...
- Android使用属性动画ValueAnimator动态改变SurfaceView的背景颜色
以下是主要代码,难点和疑问点都写在注释中: /** * 开始背景动画(此处为属性动画) */ private void startBackgroundAnimator(){ /* *参数解释: *ta ...
- (转)tcp/ip协议的简单理解 -- ip报文和tcp报文的格式
1.概念: TCP/IP协议通信的过程其实就对应着数据入栈与出栈的过程.入栈的过程,数据发送方每层不断地封装首部与尾部,添加一些传输的信息,确保能传输到目的地.出栈的过程,数据接收方每层不断地拆除首部 ...
- Java获取指定包名下的所有类的全类名的解决方案
最近有个需求需要获取一个指定包下的所有类的全类名,因此特意写了个获取指定包下所有类的全类名的工具类.在此记录一下,方便后续查阅 一.思路 通过ClassLoader来查找指定包 ...
- P4099 [HEOI2013]SAO
P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...
- maven项目中 org.hibernate.MappingNotFoundException: resource:*.hbm.xml not found问题的解决方案
是因为*.hbm.xml没有放到resource的mapper下导致的 对于Maven工程,编译的工作是由Maven程序来完成的,而Maven默认只会把src/main/resources文件夹下的文 ...
- Python 学习 第八篇:函数2(参数、lamdba和函数属性)
函数的参数是参数暴露给外部的接口,向函数传递参数,可以控制函数的流程,函数可以0个.1个或多个参数:在Python中向函数传参,使用的是赋值方式. 一,传递参数 参数是通过赋值来传递的,传递参数的特点 ...
- FFMPEG指令
FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...
- [个人博客作业Week7]软件工程团队项目感想与反思
在阅读了推荐阅读的材料之后,我想了很多东西.最终还是决定,以团队项目的经历为主线,叙述我关于软件工程的一些思考与体会. 凤凰涅槃,浴火重生 如果要我来概况这几周团队项目的经历的话,那么句话是我所能想到 ...
- LINUX内核分析第八周总结:进程的切换和系统的一般执行过程
一.进程调度与进程切换 1.不同的进程有不同的调度需求 第一种分类: I/O密集型(I/O-bound) 频繁的进行I/O 通常会花费很多时间等待I/O操作的完成 CPU密集型(CPU-bound) ...