原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了。做法与可行流类似。

  因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 310
#define M 20010
#define inf 100000000
#define S 0
#define T 301
int n,p[N],t=-,pre[N],q[N],d[N],degree[N],ans=;
bool flag[N];
struct data{int to,nxt,cap,flow,cost;
}edge[M];
void addedge(int x,int y,int z,int cost)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,edge[t].cost=cost,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,edge[t].cost=-cost,p[y]=t;
}
int inc(int &x){x++;if (x>n+) x-=n+;return x;}
bool spfa()
{
memset(d,,sizeof(d));d[S]=;
memset(flag,,sizeof(flag));
int head=,tail=;q[]=S;
do
{
int x=q[inc(head)];flag[x]=;
for (int i=p[x];~i;i=edge[i].nxt)
if (d[x]+edge[i].cost<d[edge[i].to]&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+edge[i].cost;
pre[edge[i].to]=i;
if (!flag[edge[i].to])
{
q[inc(tail)]=edge[i].to;
flag[edge[i].to]=;
}
}
}while (head!=tail);
return d[T]<inf;
}
void ekspfa()
{
while (spfa())
{
int v=inf;
for (int i=T;i!=S;i=edge[pre[i]^].to)
v=min(v,edge[pre[i]].cap-edge[pre[i]].flow);
for (int i=T;i!=S;i=edge[pre[i]^].to)
ans+=v*edge[pre[i]].cost,edge[pre[i]].flow+=v,edge[pre[i]^].flow-=v;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3876.in","r",stdin);
freopen("bzoj3876.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int k=read();
if (i>) addedge(i,,inf,);
while (k--)
{
int x=read(),y=read();
addedge(i,x,inf,y);
degree[i]++;degree[x]--;
ans+=y;
}
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(i,T,degree[i],);
else if (degree[i]<) addedge(S,i,-degree[i],);
ekspfa();
cout<<ans;
return ;
}

BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)的更多相关文章

  1. BZOJ3876 [Ahoi2014&Jsoi2014]支线剧情 【有上下界费用流】

    题目 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费最少 ...

  2. BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流

    题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...

  3. [bzoj3876][AHOI2014]支线剧情——上下界费用流

    题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...

  4. BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]

    3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...

  5. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情

    题意:给一幅图,从1开始,每条边有边权最少走一遍,可以在任意点退出,问最小花费 题解:上下界费用流,每个边都流一遍,然后为了保证流量平衡,新建源点汇点,跑费用流把流量平衡 /************* ...

  6. BZOJ 3876 [AHOI/JSOI2014]支线剧情 (最小费用可行流)

    题面:洛谷传送门 BZOJ传送门 题目大意:给你一张有向无环图,边有边权,让我们用任意条从1号点开始的路径覆盖这张图,需要保证覆盖完成后图内所有边都被覆盖至少一次,求覆盖路径总长度的最小值 最小费用可 ...

  7. [AHOI2014&&JSOI2014][bzoj3876] 支线剧情 [上下界费用流]

    题面 传送门 思路 转化模型:给一张有向无环图,每次你可以选择一条路径走,花费的时间为路径上边权的总和,问要使所有边都被走至少一遍(可以重复),至少需要花费多久 走至少一遍,等价于覆盖这条边 也就是说 ...

  8. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)

    传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...

  9. 【BZOJ3876】[AHOI2014&JSOI2014] 支线剧情(无源汇有上下界网络流)

    点此看题面 大致题意: 有一张\(DAG\),经过每条边有一定时间,从\(1\)号点出发,随时可以返回\(1\)号点,求经过所有边的最短时间. 无源汇有上下界网络流 这是无源汇有上下界网络流的板子题. ...

随机推荐

  1. SkylineGlobe SFS发布的WFS和WMS服务测试

    SkylineGlobe SFS发布的WFS服务:http://localhost/SFS/streamer.ashx?service=wfs&request=GetCapabilities& ...

  2. Luogu3516 POI2011 Shift 构造

    传送门 题意:给出一个长为$N$的排列,有两种操作:$A$:将最后一个数字放到第一个:$B$:将第三个数字放到第一个.一次性使用某种操作$k$次写作$kA$或$kB$,其中在$kA$中$k < ...

  3. [Oracle]快速构造大量数据的方法

    [Oracle]快速构造大量数据的方法: create table tab001(id integer primary key, val varchar2(100)); insert into tab ...

  4. 【JUC源码解析】CompletableFuture

    简介 先说Future, 它用来描述一个异步计算的结果.isDone方法可以用来检查计算是否完成,get方法可以用来获取结果,直到完成前一直阻塞当前线程,cancel方法可以取消任务.而对于结果的获取 ...

  5. 基于DDD的.NET开发框架ABP实例,多租户 (Saas)应用程序,采用.NET MVC, Angularjs, EntityFramework-介绍

    介绍 基于ABPZERO的多租户 (Saas)应用程序,采用ASP.NET MVC, Angularjs-介绍 ASP.NET Boilerplate作为应用程序框架. ASP.NET MVC和ASP ...

  6. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...

  7. Centos6.9下RocketMQ3.4.6高可用集群部署记录(双主双从+Nameserver+Console)

    之前的文章已对RocketMQ做了详细介绍,这里就不再赘述了,下面是本人在测试和生产环境下RocketMQ3.4.6高可用集群的部署手册,在此分享下: 1) 基础环境 ip地址 主机名 角色 192. ...

  8. React++ node.js ++SQL Sever ++MySQL++ python ++ php ++ java ++ c++ c#++ java ++ android ++ ios ++Linux+

    "C语言在它诞生的那个年代,是非常不错的语言,可惜没有OOP.当项目臃肿到一定程度,人类就不可控了. 为了弥补这个缺陷,C++诞生了.而为了应对各种情况,C++设计的大而全,太多复杂的特性, ...

  9. 对于windows 10使用感受

    windows 10是美国微软公司研发的新一代跨平台及设备应用的操作系统.在2015年7月29日12点起,windows 10推送全面开始,windows 7.windows 8 用户可以升级到win ...

  10. is interest important?

    学习是不是一定要看兴趣呢?高中时觉得只要肯学即使不喜欢又能如何,大学之后被深深打脸,面对一周那么多的实习和报告,我悄悄告诉自己不是这块料 有一些事情我就是学不会.我却很容易相信一个人. 因此,无论我如 ...