Luogu P1962 斐波那契数列(矩阵乘法模板)
累了 明天再解释
做这道题需要一些关于矩阵乘法的基础知识。
1. 矩阵乘法的基础运算

只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于B的列数)。
代码实现(重载运算符):
struct matrix {
int ma[][];
};
matrix operator * (const matrix &A,const matrix &B) {
matrix C;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < 3; k++)
C.ma[i][j] = C.ma[i][j] + A.ma[i][k] * B.ma[k][j];
return C;
}
2. 单位矩阵
或

回到这道题:
因为 f[i] = f[i-1] + f[i-2],首先构造一个矩阵 [ f[i] f[i-1] ]
它应该等于 [ f[i-1] f[i-2] ] * A.
由于f[i] = f[i-1] *1 + f[i-2]*1,所以矩阵A的第一列应该都为1;
f[i-1] = f[i-1] *1 + f[i-2]*0,所以第二列为1和0;
即


void quickpow(int b) {
while(b) {
if(b & ) ans = ans * base;
base = base * base;
b >>= ;
}
}
int main() {
if(n <= ) {
printf("");
return ;
}
base.a[][] = base.a[][] = base.a[][] = ;
ans.a[][] = ans.a[][] = ;
quickpow(n - );
printf("%d",ans.a[][]);
return ;
}
- 一个小优化:当base自乘时,求出的数组刚好为

代码如下(我做的时候没有用重载运算符而是写了个函数来实现矩阵乘法的)
#include<cstdio>
#define ll long long
using namespace std;
const ll mod = ; struct matrix {
ll ma[][];
}; matrix ans;
ll n; matrix mul(matrix A,matrix B) {
matrix C;
C.ma[][] = C.ma[][] = C.ma[][] = C.ma[][] = ;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < ; k++)
C.ma[i][j] += A.ma[i][k] * B.ma[k][j] % mod;
return C;
} matrix quickpow(matrix A,ll n) {
matrix B;
B.ma[][] = B.ma[][] = ;
B.ma[][] = B.ma[][] = ;
while(n) {
if(n&)B = mul(A,B);
A = mul(A,A);
n >>= ;
}
return B;
} int main() {
scanf("%lld",&n);
matrix A;
A.ma[][] = A.ma[][] = A.ma[][] = ;
A.ma[][] = ;
ans = quickpow (A,n);
printf("%lld",ans.ma[][]%mod);
return ;
}
Luogu P1962 斐波那契数列(矩阵乘法模板)的更多相关文章
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...
随机推荐
- 使用 json-server 模拟数据
1. 先安装 npm install json-server -g 2.查看是否安装成功 json-server -h 3.准备数据,新建一个文件夹 mock,cd mock,在mock下 新建tes ...
- array.js
// “最后加” concat 连接两个或更多的数组,并返回结果. var a = ['a','b','c']; var b = ['x','y','z']; var c = a.concat(b,t ...
- js之搜索框
目标效果:点击搜索框,搜索框内提示信息消失,可输入搜索信息,点击搜索框外搜索框如果没提示信息或者为空时,显示搜索框提示信息,如果有搜索信息,显示搜索信息. 代码如下: <!DOCTYPE htm ...
- python之初识函数
函数: 函数是对功能或动作的封装. 函数的语法和定义: def 函数名(): 函数体 调用函数: 函数名() 函数返回值: return : 返回 def yue(): print("拿出手 ...
- vue引入bootstrap——webpack
想要在vue中引入bootstrap,引入的时候需要按照如下的步骤进行. 1.引入jquery 2.引入bootstrap 阅读本文前,应该能够搭建环境,使用vue-cli进行项目的创建,可以参考 ...
- Python从入门到精通
最近研究了一下Python,名不虚传,确实挺精彩. 学习一门新的语言,我认为从入门到精通的做法是:下SDK.装IDE.练教程.结合工作应用.不断踩坑进阶.梳理总结 1.下SDK(2.7.15) 下载地 ...
- Linux RCU 机制详解
1.简介: RCU(Read-Copy Update)是数据同步的一种方式,在当前的Linux内核中发挥着重要的作用. RCU主要针对的数据对象是链表,目的是提高遍历读取数据的效率,为了达到目的使用R ...
- js获取子节点和修改input的文本框内容
js获取子节点和修改input的文本框内容 js获取子节点: $("#"+defaultPVItemId).children().eq(3); //获取某个选择器下的第四个子节点 ...
- zabbix监控磁盘IO
我这里有两种方法,感觉都不错.我这里主要是写一下监控的脚本. 1.使用iostat命令监控 1)首先打开配置文件的自定义脚本功能,然后编写脚本. #!/bin/bash ];then echo &qu ...
- switch语句(初学者)
C语言提供了另一种用于多分支选择的switch语句(常用于开关),一般形式为: switch ( 常量表达式 ) { case 常量1 :语句; case 常量2 :语句; case 常量3 :语句; ...