Luogu P1962 斐波那契数列(矩阵乘法模板)
累了 明天再解释
做这道题需要一些关于矩阵乘法的基础知识。
1. 矩阵乘法的基础运算
只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于B的列数)。
代码实现(重载运算符):
struct matrix {
int ma[][];
};
matrix operator * (const matrix &A,const matrix &B) {
matrix C;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < 3; k++)
C.ma[i][j] = C.ma[i][j] + A.ma[i][k] * B.ma[k][j];
return C;
}
2. 单位矩阵



回到这道题:
因为 f[i] = f[i-1] + f[i-2],首先构造一个矩阵 [ f[i] f[i-1] ]
它应该等于 [ f[i-1] f[i-2] ] * A.
由于f[i] = f[i-1] *1 + f[i-2]*1,所以矩阵A的第一列应该都为1;
f[i-1] = f[i-1] *1 + f[i-2]*0,所以第二列为1和0;
即


void quickpow(int b) {
while(b) {
if(b & ) ans = ans * base;
base = base * base;
b >>= ;
}
} int main() {
if(n <= ) {
printf("");
return ;
}
base.a[][] = base.a[][] = base.a[][] = ;
ans.a[][] = ans.a[][] = ;
quickpow(n - );
printf("%d",ans.a[][]);
return ;
}
- 一个小优化:当base自乘时,求出的数组刚好为


代码如下(我做的时候没有用重载运算符而是写了个函数来实现矩阵乘法的)
#include<cstdio>
#define ll long long
using namespace std;
const ll mod = ; struct matrix {
ll ma[][];
}; matrix ans;
ll n; matrix mul(matrix A,matrix B) {
matrix C;
C.ma[][] = C.ma[][] = C.ma[][] = C.ma[][] = ;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < ; k++)
C.ma[i][j] += A.ma[i][k] * B.ma[k][j] % mod;
return C;
} matrix quickpow(matrix A,ll n) {
matrix B;
B.ma[][] = B.ma[][] = ;
B.ma[][] = B.ma[][] = ;
while(n) {
if(n&)B = mul(A,B);
A = mul(A,A);
n >>= ;
}
return B;
} int main() {
scanf("%lld",&n);
matrix A;
A.ma[][] = A.ma[][] = A.ma[][] = ;
A.ma[][] = ;
ans = quickpow (A,n);
printf("%lld",ans.ma[][]%mod);
return ;
}
Luogu P1962 斐波那契数列(矩阵乘法模板)的更多相关文章
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...
随机推荐
- 《移山之道:VSTS软件开发指南》读书笔记
这两天看了<移山之道:VSTS软件开发指南>,对团队软件开发又有了新的认识.也许对于我们这些软件开发的新手来说,最重要的是具体技术与应用框架,但读了这本书后我感觉到,实际团队项目中工具的使 ...
- 初学HTML-9
详情和概要标签:利用summary标签来描述概要信息,利用details标签来描述详情信息. 默认情况下是折叠显示. 格式:<details> <summary>概要信息< ...
- MySQL安装的挫折之路
由于对MySQL卸载的不干净,mysql 的MySQL Connector Net/xxx无法卸载,后期重装无法成功.所以只能采用zip 安装https://www.cnblogs.com/Micha ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 谈谈web上各种图片应用的优缺点
web中承载信息的主要方式就是图片与文字了,以下就是对一些web图片格式的优缺点进行归纳. 1.GIF GIF图是比较古老的web图片格式之一,可以追溯到1987,几乎所有的浏览器都支持这一种格式,老 ...
- 一些关于Viewport与device-width的东西~(转)
内容转自 http://www.cnblogs.com/koukouyifan/p/4066567.html 非常感谢 口口一凡 为我们提供的这篇文章,受益匪浅,特地转到自己的博客收藏起来. 以下是原 ...
- Salesforce的报表和仪表板
报表是现代企业中最常用到的功能之一.Salesforce中提供了强大的报表和仪表板功能. 报表和仪表板简介 报表是一组数据展示,用户可以自定义规则,只有符合相应规则的数据才会显示出来. Salesfo ...
- WebLogic登录管理控制台、以及相关问题解决
1.控制台的登录 登录地址是: http://管理实例IP:端口号/console 其中,管理实例的IP或者是管理实例所在主机的主机名 端口号默认7001 因此通过http://localhost:7 ...
- javasscript基础
一.使用JS完成注册表单数据校验 1.需求分析 用户在进行注册的时候会输入一些内容,但是有些用户会输入一些不合法的内容,这样会导致服务器的压力过大,此时我们需要对用户输入的内容进行一个校验(前端校验和 ...
- Android 震动模式
震动类 public class VibratorUtil { private static final long DEFAULT_VIBRATOR = 100; private static Vib ...