罗大神说这题很简单,,,,然而我着实写的很难过。。。


题目链接:

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#problem/K

题意:

给定n个人对罪犯的d值和p值,从中选m个人使得abs(sum(d)−sum(p))最小,如果有多种情况则输出sum(p)+sum(d)最大的情况,并升序输出选择的人的编号。

分析:

这题是既要考虑差又要考虑和。还是绝对值最小。。刚看见有点懵逼。

其实不方,这题d和p最大只有20,m最大又只有20,就是说差的绝对值最大只有20 * 20,

那么我们设dp[i][j]为已经选出i个人,sum(p)−sum(d)为j的最大sum(p)+sum(d)。dp[i][j]=−1 表示这个状态无法达到。

那么问题来了,绝对值怎么处理,如果sum(p)−sum(d)小于0怎么办。。。

我们知道差的绝对值最大为20 * 20,那么我们给每个差都加上20 * 20 ,保证j大于等于0,这样就相当于以20 * 20 为原点,最终只要找到距离20 * 20 最近的dp值大于等于0的点就好了。。

想到这里就差不多了。。

很容易得到状态转移方程。

对于每个i和j的状态枚举给定的n个人,注意判断之前当前这个人之前是否出现过。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define sa(a) scanf("%d", &a)
#define sal(a) scanf("%I64d", &a)
const int maxn = 1000 + 5, maxm = 200 + 5, INF = 0x3f3f3f3f;
int p[maxm], d[maxm];
struct DP{int a; int now;};
DP dp[20 + 5][maxn];
int tt[maxn];
int cnt;
void output(int he, int ans)
{
if(he == 0) return;
int index = dp[he][ans].now;
tt[he--] = index;
output(he, ans - p[index] + d[index]);
}
bool vis(int i, int j, int k)
{
while(i >= 0){
int index = dp[i][j].now;
if(index == k) return true;
i--;
j -= p[index] - d[index];
}
return false;
}
int main (void)
{
int n, m;
int cnt = 1;
while(scanf("%d%d", &n, &m) && n + m){
for(int i = 0; i < n; i++){
sa(p[i]); sa(d[i]);
}
int t = m * 20;
for(int i = 0; i <= m; i++){
for(int j = 0; j <= 2 * t; j++){
dp[i][j].a = -1;
dp[i][j].now = -1;
}
}
dp[0][t].a = 0;
for(int i = 0; i < m; i++){
for(int j = 0; j <= t * 2; j++){
if(dp[i][j].a < 0) continue;//状态无法到达
for(int k = 0; k < n; k++){
if(dp[i][j].a + p[k] + d[k] > dp[i + 1][j + p[k] - d[k]].a){
if(vis(i, j, k)) continue;//之前出现过
dp[i + 1][j + p[k] - d[k]].a = dp[i][j].a + p[k] + d[k];
dp[i + 1][j + p[k] - d[k]].now = k;
}
}
}
}
int i = 0;
while(dp[m][t + i].a < 0 && dp[m][t - i].a < 0) i++;
int ans;
if(dp[m][t + i].a > dp[m][t - i].a) ans = t + i;
else ans = t - i;
printf("Jury #%d\n", cnt++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",
(ans - t + dp[m][ans].a)/2, (dp[m][ans].a - ans + t)/2);
output(m, ans);
sort(tt + 1, tt + m + 1);
for(int i = 1; i <= m; i++)
printf(" %d%c", tt[i] + 1, i == m?'\n':' ');
printf("\n");
}
return 0;
}

POJ 1015 Jury Compromise【DP】的更多相关文章

  1. POJ 1015 Jury Compromise(dp坑)

    提议:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团.选m人的办法是:控方和辩方会根据对候选 ...

  2. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  3. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  4. OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

    1.链接地址: http://bailian.openjudge.cn/practice/2979 http://poj.org/problem?id=1015 2.题目: 总Time Limit: ...

  5. POJ 3280 Cheapest Palindrome【DP】

    题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于 ...

  6. poj1015 Jury Compromise【背包】

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:32355   Accepted:8722   ...

  7. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  8. POJ 1015 Jury Compromise dp分组

    第一次做dp分组的问题,百度的~~ http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑 ...

  9. poj 1015 Jury Compromise(背包变形dp)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

随机推荐

  1. 谈谈对Android中的消息机制的理解

    Android中的消息机制主要由Handler.MessageQueue.Looper三个类组成,他们的主要作用是 Handler负责发送.处理Message MessageQueue负责维护Mess ...

  2. 客户端配置snmpd

    [root@ localhost]#yum install net-snmp (3)安装后打开默认的/etc/snmp/snmpd.conf文件,更改如下配置: 1) 查找以下代码: # sec.na ...

  3. SEO 第二章

    SEO第二章 1.  掌握搜索引擎工作原理(重点) 2.  了解百度算法 3.  关键词的分类 一.什么是搜索引擎? 搜索引擎是用来实现搜索服务的,说白了搜索引擎也属于一种网站. 浏览器是用来加载网站 ...

  4. C# 递归读取XML菜单数据

    在博客园注册了有4年了,很遗憾至今仍未发表过博客,趁周末有空发表第一篇博客.小生不才,在此献丑了! 最近在研究一些关于C#的一些技术,纵观之前的开发项目的经验,做系统时显示系统菜单的功能总是喜欢把数据 ...

  5. dom和bom是什么?

    DOM:文档对象模型,描述了处理网页内容的方法和接口.最根本对象是document(window.document). 由于DOM的操作对象是文档,所以DOM和浏览器没有直接关系. 部署在服务器上的文 ...

  6. C# 创建目录

    C#创建目录 var strpatj = HttpRuntime.AppDomainAppPath; if (!Directory.Exists(strpatj+"\\temp") ...

  7. python制作二维码

    1.安装MyQR    pip install MyQR  2.打开pycharm,新建项目文件 from MyQR import myqr 2.1黑白二维码 2.2,彩色动态二维码 3.当前项目本地 ...

  8. table、tr、td表格的行、单元格等属性说明

    table.tr.td表格的行.单元格等属性说明 <table>标签定义HTML表格.简单的HTML表格由table元素以及一个或多个tr.th或td元素组成. tr元素定义表格行,th元 ...

  9. 「 HDOJ P2227 」 Find the nondecreasing subsequences

    # 题目大意 就是找不下降子序列的个数. # 解题思路 一开始想着先离散化,然后再做个 $dp$,发现用 $dp$ 的话时间复杂度是 $\text{O}(n^2)$ 的,稳稳超时. 这里说说 $dp$ ...

  10. MySQL 8.0.12 基于Windows 安装教程

    第一步:到MySQL官网下载安装包:https://dev.mysql.com/downloads/mysql/ 第二步:将下载好的安装包(mysql-8.0.12-winx64 .zip)解压到相应 ...