Tensorflow多线程输入数据处理框架(一)——队列与多线程
参考书
《TensorFlow:实战Google深度学习框架》(第2版)
对于队列,修改队列状态的操作主要有Enqueue、EnqueueMany和Dequeue。以下程序展示了如何使用这些函数来操作一个队列。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: queue_operate.py
@time: 2019/1/31 21:32
@desc: 操作一个队列
""" import tensorflow as tf # 创建一个先进先出的队列,指定队列中最多可以保存两个元素,并指定类型为整数
q = tf.FIFOQueue(2, "int32")
# 使用enqueue_many函数来初始化队列中的元素。和变量初始化类似,在使用队列之前需要明确的调用这个初始化过程。
init = q.enqueue_many(([0, 10],))
# 使用Dequeue函数将队列中的第一个元素出队列。这个元素的值将被存在变量x中
x = q.dequeue()
# 将得到的值+1
y = x + 1
# 将+1后的值再重新加入队列。
q_inc = q.enqueue([y]) with tf.Session() as sess:
# 运行初始化队列的操作
init.run()
for _ in range(5):
# 运行q_inc将执行数据出队列、出队的元素+1、重新加入队列的整个过程。
v, _ = sess.run([x, q_inc])
# 打印出队元素的取值
print(v)
运行结果:
tf.Coordinator主要用于协同多个线程一起停止,以下程序展示了如何使用tf.Coordinator。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: coordinator_test1.py
@time: 2019/2/2 21:35
@desc: tf.Coordinator主要用于协同多个线程一起停止,以下程序展示了如何使用tf.Coordinator
""" import tensorflow as tf
import numpy as np
import threading
import time # 线程中运行的程序,这个程序每隔1秒判断是否需要停止并打印自己的ID。
def MyLoop(coord, worker_id):
# 使用tf.Coordinator类提供的协同工具判断当前线程是否需要停止
while not coord.should_stop():
# 随机停止所有的线程。
if np.random.rand() < 0.1:
print("Stoping from id: %d\n" % worker_id)
# 调用coord.request_stop()函数来通知其他线程停止。
coord.request_stop()
else:
# 打印当前线程的Id。
print("Working on id: %d\n" % worker_id)
# 暂停1秒
time.sleep(1) # 声明一个tf.train.Coordinator类来协同多个线程。
coord = tf.train.Coordinator()
# 声明创建5个线程。
threads = [threading.Thread(target=MyLoop, args=(coord, i, )) for i in range(5)]
# 启动所有的线程
for t in threads:
t.start()
# 等待所有线程退出
coord.join(threads)
运行结果:
如何使用tf.QueueRunner和tf.Coordinator来管理多线程队列操作。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: queuerunner_test1.py
@time: 2019/2/3 12:31
@desc: 如何使用tf.QueueRunner和tf.Coordinator来管理多线程队列操作。
""" import tensorflow as tf # 声明一个先进先出的队列,队列中最多100个元素,类型为实数
queue = tf.FIFOQueue(100, "float")
# 定义队列的入队操作
enqueue_op = queue.enqueue([tf.random_normal([1])]) # 使用tf.train.QueueRunner来创建多个线程运行队列的入队操作。
# tf.train.QueueRunner的第一个参数给出了被操作的队列,[enqueue_op] * 5
# 表示了需要启动5个线程,每个线程中运行的是enqueue_op操作
qr = tf.train.QueueRunner(queue, [enqueue_op] * 5) # 将定义过的QueueRunner加入Tensorflow计算图上指定的集合。
# tf.train.add_queue_runner函数没有指定集合
# 则加入默认集合tf.GraphKeys.QUEUE_RUNNERS。下面的函数就是将刚刚定义的
# qr加入默认的tf.GraphKeys.QUEUE_RUNNER集合。
tf.train.add_queue_runner(qr)
# 定义出队操作
out_tensor = queue.dequeue() with tf.Session() as sess:
# 使用tf.train.Coordinator来协同启动的线程。
coord = tf.train.Coordinator()
# 使用tf.train.QueueRunner时,需要明确调用tf.train.start_queue_runners
# 来启动所有线程。否则因为没有线程运行入队操作,当调用出队操作的时候,程序会一直
# 等待入队操作被运行。tf.train.start_queue_runners函数会默认启动
# tf.GraphKeys.QUEUE_RUNNERS集合中所有的QueueRunner。因为这个函数值支持启动
# 指定集合中的QueueRunner,所以一般来说tf.train.add_queue_runner函数和
# tf.trian.start_queue_runners函数会指定同一个集合。
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# 获取队列中的取值。
for _ in range(3):
print(sess.run(out_tensor)[0]) # 使用tf.train.Coordinator来停止所有的线程
coord.request_stop()
coord.join(threads)
运行结果:
Tensorflow多线程输入数据处理框架(一)——队列与多线程的更多相关文章
- tensorflow学习笔记——多线程输入数据处理框架
之前我们学习使用TensorFlow对图像数据进行预处理的方法.虽然使用这些图像数据预处理的方法可以减少无关因素对图像识别模型效果的影响,但这些复杂的预处理过程也会减慢整个训练过程.为了避免图像预处理 ...
- TensorFlow多线程输入数据处理框架(四)——输入数据处理框架
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 输入数据处理的整个流程. #!/usr/bin/env python # -*- coding: UTF-8 -* ...
- Tensorflow多线程输入数据处理框架
Tensorflow提供了一系列的对图像进行预处理的方法,但是复杂的预处理过程会减慢整个训练过程,所以,为了避免图像的预处理成为训练神经网络效率的瓶颈,Tensorflow提供了多线程处理输入数据的框 ...
- TensorFlow多线程输入数据处理框架(二)——输入文件队列
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 一个简单的程序来生成样例数据. #!/usr/bin/env python # -*- coding: UTF-8 ...
- TensorFlow多线程输入数据处理框架(三)——组合训练数据
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 通过TensorFlow提供的tf.train.batch和tf.train.shuffle_batch函数来将单 ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架
import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...
- TensorFlow+实战Google深度学习框架学习笔记(7)-----队列与多线程
一.创建一个队列: FIFOQueue:先进先出 RandomShuffleQueue:会将队列中的元素打乱,每次出列操作得到的是从当前队列所有元素中随机选择的一个. 二.操作一个队列的函数: enq ...
- 『TensorFlow』第十一弹_队列&多线程&TFRecod文件_我辈当高歌
TF数据读取队列机制详解 一.TFR文件多线程队列读写操作 TFRecod文件写入操作 import tensorflow as tf def _int64_feature(value): # val ...
随机推荐
- 终端中的乐趣:6个有趣的Linux命令行工具
文章链接: http://hpw123.net/a/Linux/ruanjiananzhuang/2014/1103/117.html 很多其它文章尽在 http://www.hpw123.net ...
- Linux和Windows设备驱动架构比较
毕业后一直在学操作系统, 有时候觉得什么都懂了,有时候又觉得好像什么都不懂,但总体来说自认为对操作系统实现机制的了解比周围的人还是要多一些.去年曾花了几个星期的晚上时间断断续续翻译了这篇对Linux和 ...
- PyOpenGL下GlutBitmapCharacter的替代
虽然pyinstaller支持pyopengl,但是调用GLUT之后,在其它电脑上面运行就会出现错误,索性按照之前C#上面的办法,把字体数据和函数用python重写 fontData.py #! /u ...
- iOS清理WebView的缓存
NSHTTPCookie *cookie; NSHTTPCookieStorage *storage = [NSHTTPCookieStorage sharedHTTPCookieStorage]; ...
- 网络基础 二 (TCP协议代码,UDP协议代码)
TCP 三次握手,四次断开 三次握手(必须先由客户端发起) 客户端:发送请求帧给服务器. 服务器:收到客户端的请求,并回复可以建立连接 客户端:与服务器建立连接 四次断开 (谁先发起都行,以客户端为 ...
- [译]Flutter JSON和序列化
[译]Flutter JSON和序列化 很难想象一个移动应用程序不需要与Web服务器通信或在某些时候容易存储结构化数据.制作网络连接的应用程序时,迟早需要消耗一些好的旧JSON. 本指南介绍了如何 ...
- linux地址映射1、2、3(⭐⭐⭐)
欢迎关注瘋耔新浪微博:http://weibo.com/cpjphone 一.线性映射与非线性映射 ...
- 如何查看一个Application是32位的还是64位的?
使用process explorer查看,找到对应的进程. 注册表的路径是Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ 使用powershell查 ...
- vue开发:移动端图片上传
因为最近遇到个移动端上传头像的需求,上传到后台的数据是base64位,其中为了提高用户体验,把比较大的图片用canvas进行压缩之后再进行上传.在移动端调用拍照功能时,会发生图片旋转,为了解决这个问题 ...
- oracle:通过shell来运行rman命令
每次都手工输入一批rman命令来进行备份等操作是很繁琐的事,有什么简便的方法吗?可以的,你可以把这批rman命令写在 shell命令里面,需要的时候,运行一下sh即可.下面是一个简单的实例: RMAN ...