济南学习 Day 5 T3 pm
科普一下:
φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
设n为正整数,以 φ(n)表示不超过n且与n互
素的正整数的个数,称为n的欧拉函数值,这里函数
φ:N→N,n→φ(n)称为欧拉函数。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
若n为质数则φ(n)=n-1。
题目描述: N
问题童颜很简单。给定N,求 ∑φ(i)
i=1
输入说明:
正整数N。
输出说明:
输出答案。
样例输入:
10
杨丽输出:
32
数据范围:
对于20%的数据N<=10^5
对于60%的数据N<=10^7
对于100%的数据N<=2*10^9
#include<iostream>
#include<cstdio>
#define ll long long
#define N 10000010
using namespace std;
int n;
ll ans,f[N];
void X(ll x)
{
for(int i=;i<=x;i++)f[i]=i;
for(int i=;i<=x/;i++)
{
if(f[i]==i)
{
for(int j=i;j<=x;j+=i)
{
f[j]=f[j]*(i-)/i;
}
}
}
}
int main()
{
scanf("%d",&n);
X(n);ans=;
for(int i=;i<=n;i++)
{
if(f[i]==i)f[i]--;
ans+=f[i];
}
cout<<ans<<endl;
return ;
}
思路:筛法求欧拉函数
济南学习 Day 5 T3 pm的更多相关文章
- 济南学习 Day 3 T3 pm
仙人掌(cactus)Time Limit:1000ms Memory Limit:64MB题目描述LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的结果. ...
- 济南学习 Day 2 T3 pm
它[问题描述]N个人坐成一圈,其中第K个人拿着一个球.每次每个人会以一定的概率向左边的人和右边的人传球.当所有人都拿到过球之后,最后一个拿到球的人即为胜者.求第N个人获胜的概率. (所有人按照编号逆时 ...
- 济南学习 Day 5 T1 pm
欧拉函数(phi)题目描述: 已知(N),求phi(N). 输入说明: 正整数N. 输出说明: 输出phi(N). 样例输入: 8 样例输出: 4 数据范围: 对于20%的数据,N<=10^5 ...
- 济南学习 Day 4 T1 pm
幸运数字(number)Time Limit:1000ms Memory Limit:64MB题目描述LYK 最近运气很差,例如在 NOIP 初赛中仅仅考了 90 分,刚刚卡进复赛,于是它决定使用一些 ...
- 济南学习 Day 3 T2 pm
LYK 快跑!(run)Time Limit:5000ms Memory Limit:64MB题目描述LYK 陷进了一个迷宫! 这个迷宫是网格图形状的. LYK 一开始在(1,1)位置, 出口在(n, ...
- 济南学习 Day 3 T1 pm
巧克力棒(chocolate)Time Limit:1000ms Memory Limit:64MB题目描述LYK 找到了一根巧克力棒,但是这根巧克力棒太长了,LYK 无法一口吞进去.具体地,这根巧克 ...
- 济南学习 Day 3 T3 am
选数字 (select)Time Limit:3000ms Memory Limit:64MB题目描述LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上的数 ...
- 济南学习 Day 2 T2 pm
她[问题描述]给你L,R,S,M,求满足L≤ (S × x) mod M ≤ R最小的正整数 X.[输入格式]第一行一个数T代表数据组数.接下来一行每行四个数代表该组数据的L,R,S,M.[输出格式] ...
- 济南学习 Day 2 T3 am
[问题描述]m× m的方阵上有n棵葱,你要修一些栅栏把它们围起来.一个栅栏是一段沿着网格建造的封闭图形(即要围成一圈) .各个栅栏之间应该不相交.不重叠且互相不包含.如果你最多修k个栅栏,那么所有栅栏 ...
随机推荐
- GUI进化--数据与界面分离
http://blog.csdn.net/doon/article/details/5946862 1.何谓数据和界面分离? GUI,即Graphic User Interface,人机交换界面.连接 ...
- 2018 北京区域赛 I - Palindromes (找规律)
题目 HihoCoder - 1878 题目大意 给出k,让求出第k个回文数(k的“长度”不超过1e5) 题解 之前做过类似的题,是统计各阶段的数找到第K个回文数,但这里K太大,需要寻找新的方法. 打 ...
- 【page-monitor 前端自动化 下篇】 实践应用
转载文章:来源(靠谱崔小拽) 通过page-diff的初步调研和源码分析,确定page-diff在前端自动化测试和监控方面做一些事情.本篇主要介绍下,page-diff在具体的实践中的一些应用 核心d ...
- java在线聊天项目1.1版 ——开启多个客户端,分别实现注册和登录功能,使用客户端与服务端信息request机制,重构线程,将单独的登录和注册线程合并
实现效果图: eclipse项目中初步整合之前的各个客户端和服务端的窗口与工具类,效果如下图: 已将注册服务器线程RegServer功能放到LoginServer中,使用客户端与服务端的request ...
- FTP文传协议的应用
我开发的项目中一直用到都是AFNetworking上传图片的方法,最近老大说要用FTP上传,网上的资料很少,毕竟这种上传方式现在用的不多了,于是花了一天时间学习了FTP文件传输协议.下面是我的个人理解 ...
- iOS 第三方类库之MBProgressHUD
github链接地址 MBProgressHUD是一个开源的第三方类库实现了很多种样式的提示框,类似Activity indicator,使用上简单.方便,并且可以对显示的内容进行自定义,功能很强大, ...
- python virtualenv学习
补充:在开发Python应用程序的时候,系统安装的Python3只有一个版本:3.4.所有第三方的包都会被pip安装到Python3的site-packages目录下. virtualenv就是 ...
- awk纯干货
AWK的惊人表现: Awk设计的目的:简化一般文本处理的工作. 属于POSIX的一部分. AWK命令行: Awk的调用可以定义变量.提供程序并且指定输入文件: Awk [ -F fs ] [ -v ...
- 【Java_基础】java类加载过程与双亲委派机制
1.类的加载.连接和初始化 当程序使用某个类时,如果该类还未被加载到内存中,则系统会通过加载.连接.初始化三个步骤来对类进行初始化.如果没有意外,jvm将会连续完成这三个步骤,有时也把这三个步骤统称为 ...
- 数据结构( Pyhon 语言描述 ) — — 第1章:Python编程基础
变量和赋值语句 在同一条赋值语句中可以引入多个变量 交换变量a 和b 的值 a,b = b,a Python换行可以使用转义字符\,下一行的缩进量相同 )\ 帮助文档 help() 控制语句 条件式语 ...