济南学习 Day 5 T3 pm
科普一下:
φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
设n为正整数,以 φ(n)表示不超过n且与n互
素的正整数的个数,称为n的欧拉函数值,这里函数
φ:N→N,n→φ(n)称为欧拉函数。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
若n为质数则φ(n)=n-1。
题目描述: N
问题童颜很简单。给定N,求 ∑φ(i)
i=1
输入说明:
正整数N。
输出说明:
输出答案。
样例输入:
10
杨丽输出:
32
数据范围:
对于20%的数据N<=10^5
对于60%的数据N<=10^7
对于100%的数据N<=2*10^9
#include<iostream>
#include<cstdio>
#define ll long long
#define N 10000010
using namespace std;
int n;
ll ans,f[N];
void X(ll x)
{
for(int i=;i<=x;i++)f[i]=i;
for(int i=;i<=x/;i++)
{
if(f[i]==i)
{
for(int j=i;j<=x;j+=i)
{
f[j]=f[j]*(i-)/i;
}
}
}
}
int main()
{
scanf("%d",&n);
X(n);ans=;
for(int i=;i<=n;i++)
{
if(f[i]==i)f[i]--;
ans+=f[i];
}
cout<<ans<<endl;
return ;
}
思路:筛法求欧拉函数
济南学习 Day 5 T3 pm的更多相关文章
- 济南学习 Day 3 T3 pm
仙人掌(cactus)Time Limit:1000ms Memory Limit:64MB题目描述LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的结果. ...
- 济南学习 Day 2 T3 pm
它[问题描述]N个人坐成一圈,其中第K个人拿着一个球.每次每个人会以一定的概率向左边的人和右边的人传球.当所有人都拿到过球之后,最后一个拿到球的人即为胜者.求第N个人获胜的概率. (所有人按照编号逆时 ...
- 济南学习 Day 5 T1 pm
欧拉函数(phi)题目描述: 已知(N),求phi(N). 输入说明: 正整数N. 输出说明: 输出phi(N). 样例输入: 8 样例输出: 4 数据范围: 对于20%的数据,N<=10^5 ...
- 济南学习 Day 4 T1 pm
幸运数字(number)Time Limit:1000ms Memory Limit:64MB题目描述LYK 最近运气很差,例如在 NOIP 初赛中仅仅考了 90 分,刚刚卡进复赛,于是它决定使用一些 ...
- 济南学习 Day 3 T2 pm
LYK 快跑!(run)Time Limit:5000ms Memory Limit:64MB题目描述LYK 陷进了一个迷宫! 这个迷宫是网格图形状的. LYK 一开始在(1,1)位置, 出口在(n, ...
- 济南学习 Day 3 T1 pm
巧克力棒(chocolate)Time Limit:1000ms Memory Limit:64MB题目描述LYK 找到了一根巧克力棒,但是这根巧克力棒太长了,LYK 无法一口吞进去.具体地,这根巧克 ...
- 济南学习 Day 3 T3 am
选数字 (select)Time Limit:3000ms Memory Limit:64MB题目描述LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上的数 ...
- 济南学习 Day 2 T2 pm
她[问题描述]给你L,R,S,M,求满足L≤ (S × x) mod M ≤ R最小的正整数 X.[输入格式]第一行一个数T代表数据组数.接下来一行每行四个数代表该组数据的L,R,S,M.[输出格式] ...
- 济南学习 Day 2 T3 am
[问题描述]m× m的方阵上有n棵葱,你要修一些栅栏把它们围起来.一个栅栏是一段沿着网格建造的封闭图形(即要围成一圈) .各个栅栏之间应该不相交.不重叠且互相不包含.如果你最多修k个栅栏,那么所有栅栏 ...
随机推荐
- The Django Book - 第四章 模板2
模板(相应)使用的几种方式: 1.使用HttpResponse返回字符串HTML from django.http import HttpResponse def current_datetime(r ...
- lwz-过去一年的总结(15-16)
今天2016年2月6日,还有1个半小时的时间,就要离开这个工作了9个月的地方,准备前往下个城市了.趁着这点时间,来给过去的一年做个即兴的总结吧. 2015年的2月份,在以前同学的提议和支持下,我重新学 ...
- Clusterware 和 RAC 中的域名解析的配置校验和检查 (文档 ID 1945838.1)
适用于: Oracle Database - Enterprise Edition - 版本 10.1.0.2 到 12.1.0.1 [发行版 10.1 到 12.1]Oracle Database ...
- spring框架的总结
http://www.cnblogs.com/wangzn/p/6138062.html 大家好,相信Java高级工程师对spring框架都很了解吧!那么我以个人的观点总结一下spring,希望大家有 ...
- poj2312Battle City BFS
题意: M行N列矩阵, 'Y'表示开始位置, 'T'表示目标位置, 从开始位置到目标位置至少需要走多少步,其中, 'S', 'R'表示不能走, 'B' 花费为2, 'E'花费为1. 思路:纯 BFS. ...
- 结合浅层高层特征的paper总结
1.ION:在conv3.conv4.conv5和context features上分别进行roi_pooling,在channel那一维进行concat 2.Hypernet:在较浅层max_poo ...
- vs 2017 boost 安装目录 非安装
linuxg++ -Wall -std=c++11 boost_socks5.cpp -o boost_socks5 -lboost_system -lboost_thread -lpthread m ...
- Bootsrtap 面包屑导航(Breadcrums)
Bootstrap面包屑导航是一种基于网站层次信息显示的方式.以博客为例,面包屑导航可以显示发布日期,类别或标签,它们表示当前页面在导航层次结构内的位置. Bootstrap面包屑导航其实是一个简单的 ...
- Bootstrap 原始按钮
Bootstrap 原始按钮 <!DOCTYPE html><html><head><meta http-equiv="Content-Type&q ...
- SQLyog连接数据库 提示错误plugin caching_sha2_password could not be loaded
1.打开mysql cmd 2.执行语句 ALTER USER 'root'@'localhost' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER; # ...