Apache Flink - 常见数据流类型
DataStream:
DataStream
是 Flink 流处理 API 中最核心的数据结构。它代表了一个运行在多个分区上的并行流。一个DataStream
可以从StreamExecutionEnvironment
通过env.addSource(SourceFunction)
获得。- DataStream 上的转换操作都是逐条的,比如
map()
,flatMap()
,filter()
。DataStream 也可以执行rebalance
(再平衡,用来减轻数据倾斜)和broadcaseted
(广播)等分区转换。 如上图的执行图所示,DataStream 各个算子会并行运行,算子之间是数据流分区。如 Source 的第一个并行实例(S1)和 flatMap() 的第一个并行实例(m1)之间就是一个数据流分区。而在 flatMap() 和 map() 之间由于加了 rebalance(),它们之间的数据流分区就有3个子分区(m1的数据流向3个map()实例)。
KeyedStream:
KeyedStream
用来表示根据指定的key进行分组的数据流。KeyedStream
可以通过调用DataStream.keyBy()
来获得。而在KeyedStream
上进行任何transformation都将转变回DataStream
。在实现中,KeyedStream
是把key的信息写入到了transformation中。每条记录只能访问所属key的状态,其上的聚合函数可以方便地操作和保存对应key的状态。
WindowedStream & AllWindowedStream:
WindowedStream
代表了根据key分组,并且基于WindowAssigner
切分窗口的数据流。所以WindowedStream
都是从KeyedStream
衍生而来的。而在WindowedStream
上进行任何transformation也都将转变回DataStream
。DataStream[MyType] stream = ...
WindowedDataStream[MyType] windowed = stream
.keyBy("userId")
.window(TumblingEventTimeWindows.of(Time.seconds(5))) // Last 5 seconds of data
DataStream[ResultType] result = windowed.reduce(myReducer)Flink 的窗口实现中会将到达的数据缓存在对应的窗口buffer中(一个数据可能会对应多个窗口)。当到达窗口发送的条件时(由Trigger控制),Flink 会对整个窗口中的数据进行处理。Flink 在聚合类窗口有一定的优化,即不会保存窗口中的所有值,而是每到一个元素执行一次聚合函数,最终只保存一份数据即可。
- 在key分组的流上进行窗口切分是比较常用的场景,也能够很好地并行化(不同的key上的窗口聚合可以分配到不同的task去处理)。不过当我们需要在普通流上进行窗口操作时,就要用到
AllWindowedStream
。AllWindowedStream
是直接在DataStream
上进行windowAll(...)
操作。AllWindowedStream 的实现是基于 WindowedStream 的。Flink 不推荐使用AllWindowedStream
,因为在普通流上进行窗口操作,就势必需要将所有分区的流都汇集到单个的Task中,而这个单个的Task很显然就会成为整个Job的瓶颈。
JoinedStreams & CoGroupedStreams:
- co-group 侧重的是group,是对同一个key上的两组集合进行操作,而 join 侧重的是pair,是对同一个key上的每对元素进行操作, join 只是 co-group 的一个特例。
- JoinedStreams 和 CoGroupedStreams 是基于 Window 上实现的,所以 CoGroupedStreams 最终又调用了 WindowedStream 来实现。
DataStream[MyType] firstInput = ...
DataStream[AnotherType] secondInput = ... DataStream[(MyType, AnotherType)] result = firstInput.join(secondInput)
.where("userId").equalTo("id")
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...})双流上的数据在同一个key的会被分别分配到同一个window窗口的左右两个篮子里,当window结束的时候,会对左右篮子进行笛卡尔积从而得到每一对pair,对每一对pair应用 JoinFunction。
ConnectedStreams:
- 在 DataStream 上有一个 union 的转换
dataStream.union(otherStream1, otherStream2, ...)
,用来合并多个流,新的流会包含所有流中的数据。union 有一个限制,就是所有合并的流的类型必须是一致的。 - union 有一个限制,就是所有合并的流的类型必须是一致的。
ConnectedStreams
提供了和 union 类似的功能,用来连接两个流,但是与 union 转换有以下几个区别:- ConnectedStreams 只能连接两个流,而 union 可以连接多个流。
- ConnectedStreams 连接的两个流类型可以不一致,而 union 连接的流的类型必须一致。
- ConnectedStreams 会对两个流的数据应用不同的处理方法,并且双流之间可以共享状态。这在第一个流的输入会影响第二个流时, 会非常有用。
- 如下 ConnectedStreams 的样例,连接
input
和other
流,并在input
流上应用map1
方法,在other
上应用map2
方法,双流可以共享状态(比如计数)。DataStream[MyType] input = ...
DataStream[AnotherType] other = ... ConnectedStreams[MyType, AnotherType] connected = input.connect(other) DataStream[ResultType] result =
connected.map(new CoMapFunction[MyType, AnotherType, ResultType]() {
override def map1(value: MyType): ResultType = { ... }
override def map2(value: AnotherType): ResultType = { ... }
})当并行度为2时:
Apache Flink - 常见数据流类型的更多相关文章
- [Note] Apache Flink 的数据流编程模型
Apache Flink 的数据流编程模型 抽象层次 Flink 为开发流式应用和批式应用设计了不同的抽象层次 状态化的流 抽象层次的最底层是状态化的流,它通过 ProcessFunction 嵌入到 ...
- Apache Flink vs Apache Spark——感觉二者是互相抄袭啊 看谁的好就抄过来 Flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率
Apache Flink是什么 Flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理.这个目标看起来和Spark和类似.没错,Flink也在尝试解决 Spark在解决的问题.这两套系统都在 ...
- Apache Flink - 数据流容错机制
Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态.该机制确保即使出现故障,程序的状态最终也会反映来自数据流的每条记录(只有一次). 从容错和消息处理的语义上(at leas ...
- Apache Flink 介绍
原文地址:https://mp.weixin.qq.com/s?__biz=MzU2Njg5Nzk0NQ==&mid=2247483660&idx=1&sn=ecf01cfc8 ...
- 深入理解Apache Flink
Apache Flink(下简称Flink)项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多人的关注.本文将深入分析Flink的一些关键技术与特性,希望能够帮 ...
- 深入理解Apache Flink核心技术
深入理解Apache Flink核心技术 2016年02月18日 17:04:03 阅读数:1936 标签: Apache-Flink数据流程序员JVM 版权声明:本文为博主原创文章,未经博主允许 ...
- 《从0到1学习Flink》—— Apache Flink 介绍
前言 Flink 是一种流式计算框架,为什么我会接触到 Flink 呢?因为我目前在负责的是监控平台的告警部分,负责采集到的监控数据会直接往 kafka 里塞,然后告警这边需要从 kafka topi ...
- Apache Flink 入门示例demo
在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序. 开发环境准备 Flink 可以运行在 Linux, Max OS X, 或者是 Windows ...
- Apache Flink -Streaming(DataStream API)
综述: 在Flink中DataStream程序是在数据流上实现了转换的常规程序. 1.示范程序 import org.apache.flink.api.common.functions.FlatMap ...
随机推荐
- linux配置sftp简单过程
首先疑惑是, 他需要的是上级的目录权限必须为root, 这点我有点不明白 环境是centos7.6 ssh 首先开整/etc/ssh/sshd_config # override default o ...
- Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 14 Windows编程——SetWindowLong
使用默认窗口处理函数,源码 #include<Windows.h> #include<Windowsx.h> LRESULT CALLBACK WindProc(HWND hw ...
- django工作原理简介
django工作原理简介 先简单的介绍一下django的工作原理,其中还会涉及到Middleware(中间件,包括request, view, exception, response),URLConf ...
- Linux学习之五-Linux系统终端常用的快捷键
Linux系统终端常用的快捷键 (使用快捷键能大大提高效率,部分用在远程登录的工具如Xshell下) 剪切板操作(终端不支持,因为终端是纯命令行) Ctrl+insert 复制 Shift+i ...
- 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it (扫描线)
2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 F Color it (扫描线) 链接:https://ac.nowcoder.com/acm/contest/163/F来源:牛客网 时间 ...
- UML再论关系extend和include
我在画用例图时,图中既有extend关系也有include关系,师父就问我这两种关系的区别,我在画的时候确实查阅了很多资料,可是在问的时候还是回答不上来,这就是这篇博客得来的缘由了. [include ...
- 用Python写网络爬虫 第二版
书籍介绍 书名:用 Python 写网络爬虫(第2版) 内容简介:本书包括网络爬虫的定义以及如何爬取网站,如何使用几种库从网页中抽取数据,如何通过缓存结果避免重复下载的问题,如何通过并行下载来加速数据 ...
- redis中对list类型某个元素的查找和删除
我们的信息都是放到redis的缓存中,结构为list,如果知道特定的值的话,通过LREM key count value这样就可以.对于redis的list结构,获取某个位置的值通过 LINDE ...
- 2019HDU多校第7场——构造
题意 假设现在你在准备考试,明天的考试有 $n$ 道题目,对于分值为 $i$ 的题目至少复习 $i+1$ 小时才能做对,已知总分为$m$,求确保完成 $k$ 道题的最少时间. 分析 手动尝试一下,发现 ...