梯度下降算法 Gradient Descent
梯度下降算法 Gradient Descent
梯度下降算法是一种被广泛使用的优化算法。在读论文的时候碰到了一种参数优化问题:
在函数\(F\)中有若干参数是不确定的,已知\(n\)组训练数据,期望找到一组参数使得残差平方和最小。通俗一点地讲就是,选择最合适的参数,使得函数的预测值与真实值最相符。
\]
其中,\(\hat{f}\)为真实值,\(f\)为测量值。在函数\(F\)中,存在n,m,p等参数,也存在自变量。训练数据给出了若干组自变量与真实值,算法需要找到合适的参数使得函数与训练数据相符。
这时就要用到今天的算法:梯度下降算法!
梯度下降算法的分类:
- 梯度下降算法 Batch Gradient Descent
- 随机梯度下降算法 Stochastic Gradient Descent
- 小批量梯度下降算法 Mini-batch Gradient Descent
梯度下降算法
在梯度下降算法中,我们根据梯度方向,迭代地调整参数。我们把所有参数(例如n,m,p之类的)打包进一个变量组\(\theta=\{n,m,p,..\}\),然后对这个变量组迭代更新;定义函数\(L=\sum_{i=1}^n (\hat{f}_i - f_i)^2\)为误差函数。
\]
其中,\(r\)为学习率。r的大小决定了参数移动的“步幅”,若r值过小,往往需要更长的时间才能算出结果;而值过大又可能导致无法得到最优值。

梯度的方向是函数增大最快的方向,那么梯度的反方向就是减小最快的方向。因此我们沿着梯度更小的方向进行参数更新可以有效地找到全局最优解。
def SGD(f, theta0, alpha, num_iters):
"""
Arguments:
f -- the function to optimize, it takes a single argument
and yield two outputs, a cost and the gradient
with respect to the arguments
theta0 -- the initial point to start SGD from
num_iters -- total iterations to run SGD for
Return:
theta -- the parameter value after SGD finishes
"""
theta = theta0
for iter in range(num_iters):
# For python 2.x - use xrange
grad = f(theta)[1]
# there is NO dot product ! return theta
theta = theta - r*(alpha * grad)
随机梯度下降算法
梯度下降算法看似已经解决了问题,但是还面临着“数据运算量过大”的问题。假设一下,我们现在有10000组训练数据,有10个参量,那么仅迭代一次就产生了10000*10=100000次运算。如果想让它迭代1000次的话,就需要10^8的运算量。显然易见,这个算法没法处理大规模的数据。
那么如何改进呢?在一次迭代中,将训练数据的量由“全体”改为“随机的一个”。这便是随机梯度下降算法(SGD)
优点:
打个比方,我们开发了一个新的软件,需要向100个用户收集体验数据并进行产品升级。在梯度下降方法中,我们会先向这100个用户挨个询问,然后进行一次优化;再挨个询问,再进行一次调整...在随机梯度下降方法中,我们会在询问完第一个用户之后就进行一次优化,然后拿着优化后的用户询问第二个客户,然后再优化;这样我们在完成一轮调查之后,就已经调整了100次!可以大大提高运行效率!
缺点:
但是SGD在接近最优点之后很难稳定下来,而是在最优点附近徘徊,而难以到达最优。这一问题可以通到在后期适度降低学习率来解决。
并且由于随机性较大,所以下降的过程中较为曲折:

小批量梯度下降算法
小批量梯度下降算法则是吸收了前两者的优点。该算法存在一个变量Batch_size,指一次迭代中随机的选择多少的训练数据。如果Batch_size=n,就是梯度下降算法;如果Batch_size=1,就是随机梯度下降算法。
这样的小批量不仅可以减少计算的成本,还可以提高算法的稳定性。
梯度下降算法 Gradient Descent的更多相关文章
- 梯度下降算法(Gradient descent)GD
1.我们之前已经定义了代价函数J,可以将代价函数J最小化的方法,梯度下降是最常用的算法,它不仅仅用在线性回归上,还被应用在机器学习的众多领域中,在后续的课程中,我们将使用梯度下降算法最小化其他函数,而 ...
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- 梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...
- 梯度下降(Gradient descent)
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
- CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
- <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本
梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...
- 梯度下降法Gradient descent(最速下降法Steepest Descent)
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向 d=−gk
随机推荐
- oracle expdp/exp ora-600/ora-39014报错处理
在一次数据迁移的时候,expdp导出报错,错误信息如下: 版本号:11.2.0.1 没有打PSU,查看报错的aler部分日志如下: 其中的某一些trc日志文件截图: Trace file d:\ora ...
- 云原生之旅 - 4)基础设施即代码 使用 Terraform 创建 Kubernetes
前言 上一篇文章我们已经简单的入门Terraform, 本篇介绍如何使用Terraform在GCP和AWS 创建Kubernetes 资源. Kubernetes 在云原生时代的重要性不言而喻,等于这 ...
- .NET性能系列文章二:Newtonsoft.Json vs. System.Text.Json
微软终于追上了? 图片来自 Glenn Carstens-Peters Unsplash 欢迎来到.NET性能系列的另一章.这个系列的特点是对.NET世界中许多不同的主题进行研究.基准和比较.正如标题 ...
- ES6 学习笔记(六)基本类型String
字符串String 1.字面量 需要注意的地方: 由单引号或双引号括起来的字符序列. 单双引号可以嵌套,由最外围引号定界字符串 字符串字面量可以拆分成数行,每行必须以反斜线(\)结束,且反斜线都不计入 ...
- Linux学习环境搭建流程
Linux学习环境搭建 Vmware安装 VMware下载:https://www.vmware.com/go/getworkstation-win 运行安装程序,该重启安装驱动就重启,不需要就下一步 ...
- CSS布局秘籍(2)-6脉神剑
HTML系列: 人人都懂的HTML基础知识-HTML教程(1) HTML元素大全(1) HTML元素大全(2)-表单 CSS系列: CSS基础知识筑基 常用CSS样式属性 CSS选择器大全48式 CS ...
- 2022春每日一题:Day 18
题目:[JSOI2007]字符加密 很常见的做法,破环为链,然后以2n为总长再后缀排序,然后对于SA[i] < n 的,说明第i小后缀的编号是小于n的,也就是说,以i开头的编号是合法的,那么输出 ...
- PS2023下载安装保姆级教程中文汉化完整版
PS2023Windows安装教程退出安全软件①:下载PS2023安装包 ②:打开下载好的文件,鼠标右键把安装包解压③:打开解压好的"PS 24.0.0"文件夹,找到并选中&quo ...
- docker中php xdebug调试开发
docker-compose环境来自:https://github.com/zhaojunlik...原文:http://blog.oeynet.com/post/9... 说明 在开发中,断点调试是 ...
- 【ASP.NET Core】MVC控制器的各种自定义:修改参数的名称
在上一篇中,老周演示了通过实现约定接口的方式自定义控制器的名称. 至于说自定义操作方法的名称,就很简单了,因为有内置的特性类可以用.看看下面的例子. [Route("[controller] ...