广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。

import numpy as np

"""
如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。
"""
a = np.array([1, 2, 3, 4])
b = np.array([10, 20, 30, 40])
c = a * b
print(c) # [ 10 40 90 160] """
当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。如:
"""
a = np.array([[0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
b = np.array([0, 1, 2])
print(a + b)
print('\n')
"""
4x3 的二维数组与长为 3 的一维数组相加,等效于把数组 b 在二维上重复 4 次再运算:
"""
a = np.array([[0, 0, 0],
[10, 10, 10],
[20, 20, 20],
[30, 30, 30]])
b = np.array([0, 1, 2])
bb = np.tile(b, (4, 1)) # 重复 b 的各个维度, 假设reps的维度为d,那么新数组的维度为max(d,A.ndim)
print(bb)
print(a + bb)

如果两个 Tensor 的形状的长度不一致,会在较小长度的形状矩阵前部添加 1,直到两个 Tensor 的形状长度相等。

保证两个 Tensor 形状相等之后,每个维度上的结果维度就是当前维度上的较大值。

import numpy as np

"""
如果两个 Tensor 的形状的长度不一致,会在较小长度的形状矩阵前部添加 1,直到两个 Tensor 的形状长度相等。
保证两个 Tensor 形状相等之后,每个维度上的结果维度就是当前维度上的较大值。
"""
x = np.ones([2, 1, 4])
y = np.ones((3, 1))
print('x => ', x)
print('y => ', y)
print('x+y => ', x + y)

广播的规则:

  • 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。
  • 输出数组的形状是输入数组形状的各个维度上的最大值。
  • 如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。
  • 当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。

简单理解:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:

  • 数组拥有相同形状。
  • 当前维度的值相等。
  • 当前维度的值有一个是 1

Python NumPy 广播(Broadcast)的更多相关文章

  1. NumPy 广播(Broadcast)

    NumPy 广播(Broadcast) 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b ...

  2. 吴裕雄--天生自然Numpy库学习笔记:NumPy 广播(Broadcast)

    广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足 a.shape == ...

  3. Numpy | 10 广播(Broadcast)

    广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 下面的图片展示了数组 b 如何通过广播来与数组 a 兼容. 4x ...

  4. CS231中的python + numpy课程

    本课程中所有作业将使用Python来完成.Python本身就是一种很棒的通用编程语言,现在在一些流行的库(numpy,scipy,matplotlib)的帮助下,它为科学计算提供强大的环境. 我们希望 ...

  5. CS231n课程笔记翻译1:Python Numpy教程

    译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...

  6. [开发技巧]·Numpy广播机制的深入理解与应用

    [开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很 ...

  7. Python NumPy学习总结

    一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...

  8. 7、numpy——广播

    1.广播的引出 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足 a. ...

  9. 初探numpy——广播和数组操作函数

    numpy广播(Broadcast) 若数组a,b形状相同,即a.shape==b.shape,那么a+b,a*b的结果就是对应数位的运算 import numpy as np a=np.array( ...

  10. ACM/ICPC 之 数据结构-邻接表+BFS(TSH OJ-无线广播Broadcast)

    这道题中若能够构成互不干扰的区域,其构成的图其实就是汉密尔顿路(Hamilton road),因此如果能够观察出来可以直接转化为汉密尔顿路的存在性证明,即便不能观察,我相信ACMer也能转化为BFS问 ...

随机推荐

  1. MQ异常断开

    ActiveMQ:No operations allowed after statement closed问题及解决办法   ActiveMQ版本:5.5.1 现象: 系统现象:部分消息发送失败,失败 ...

  2. Rancher 通过主机标签进行调度

    https://blog.csdn.net/qq12547345/article/details/121486709

  3. Promise async await的用法实例一枚

    getlog2() { console.log("222"); }, getlog3() { return new Promise((resolve, reject) => ...

  4. c/c++指针从浅入深介绍——基于数据内存分配的理解(上)

    c/c++指针从浅入深介绍--基于数据内存分配的理解(上) 本文是对自我学习的一个总结以及回顾,文章内容主要是针对代码中的数据在内存中的存储情况以及存储中数值的变化来对指针进行介绍,是对指针以及数据在 ...

  5. 【读书笔记】组合计数中的行列式方法 专题3 完美匹配: the Pfaffian method

    目录 专题3-Perfect matchings: the Pfaffian method 一些定义 用2×1的砖密铺a×b的大矩形的方法数 专题3-Perfect matchings: the Pfa ...

  6. 深入理解 Python 虚拟机:字典(dict)的实现原理及源码剖析

    深入理解 Python 虚拟机:字典(dict)的实现原理及源码剖析 在本篇文章当中主要给大家深入介绍一下在 cpython 当中字典的实现原理,在本篇文章当中主要介绍在早期 python3 当中的版 ...

  7. Java面试——Spring

    一.Spring Bean 作用域 [1]singleton:该属性在 IOC容器仅创建一个 Bean实例(单例),IOC容器每次返回的是同一个 Bean实例.[2]prototype:该属性在 IO ...

  8. Kafka 消费者读取数据

    消费者不需要自行管理 offset(分组+topic+分区),系统通过 broker 将 offset 存放在本地.低版本通过 zk 自行管理.系统自行管理分区和副本情况.消费者断线后会自动根据上一次 ...

  9. Synchronized 关键字详解

    更多内容,前往 IT-BLOG Synchronized原理分析 加锁和释放锁的原理 深入JVM看字节码,创建如下的代码: 1 public class SynchronizedDemo2 { 2 O ...

  10. 代码Bug太多?给新人Code Review头都大了?快来试试SpotBugs

    如果你需要一个自动化的工具帮助你或者你的团队发现代码中的缺陷,在提升代码质量同时减少人工Code Review的成本,那这篇文章非常的适合你.本文围绕SpotBugs与Gradle集成,将相关配置和使 ...