拓扑排序能否成功,其实就是看有没有环

  • 有环:说明环内结点互为前置,永远也不可能完成
  • 无环:是线性的,可以完成

DFS方法

思路:

逆向思维,遍历到边界点(无邻接点相当于叶子),再不断回溯将结点加入到结果中,得到的是拓扑排序的逆序,进行反转即可得到拓扑序列。

遍历过程中判断是否有环。

注意:要使用vist[]标记三种状态。假如只标记两种状态,则下面这种情况会判定为false,但其实是true

代码

class Solution {
// 找到出度为0的点,
vector<int> res;
vector<int> g[2005];
int vist[2005]; // 1:正在遍历中 0:未遍历 2:已经完成了遍历
bool isLegal = true;
public:
void dfs(int x){
vist[x] = 1;
for(int i = 0;i < g[x].size();i++){
int nex = g[x][i];
if(vist[nex] == 0){
if(!isLegal) return ;
dfs(nex);
}else if(vist[nex] == 1){
isLegal = false;
return;
}
}
vist[x] = 2;
res.push_back(x);
} vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
int n = prerequisites.size();
for(int i = 0;i < n;i++){
int a = prerequisites[i][0], b = prerequisites[i][1];
g[b].push_back(a);
}
for(int i = 0;i < numCourses;i++){
if(!vist[i]) dfs(i);
} if(!isLegal) return {};
reverse(res.begin(),res.end());
return res;
}
};

BFS方法

思路

正向,从入度为0的点开始正向遍历,使用每将一个点加入结果(删去),该点的邻接点的入度-1。若邻接点的入度减为0,则可以加入队列。最后结果集的数量应当等于课程的数量。

代码

/*
拓扑排序(BFS)
*/
#include <bits/stdc++.h>
using namespace std; class Solution {
// 构建图,并初始化每个结点的入度
// 利用队列进行拓扑排序,不断的删除点,更新入度
vector<int> res;
int inDegree[2005];
vector<int> g[2005];
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
int n = prerequisites.size();
for(int i = 0;i < n;i++){
int a = prerequisites[i][0], b = prerequisites[i][1];
g[b].push_back(a);
inDegree[a]++;
}
queue<int> q;
// 寻找源点
for(int i = 0;i < numCourses;i++){
if(inDegree[i] == 0){
q.push(i);
}
}
while(!q.empty()){
int now = q.front();
q.pop();
res.push_back(now);
for(int i = 0;i < g[now].size();i++){
inDegree[g[now][i]]--;
if(inDegree[g[now][i]] == 0){
q.push(g[now][i]);
}
}
}
if(res.size() != numCourses) return {};
return res;
}
};

leetcode210.拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  4. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  5. 图——拓扑排序(uva10305)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  6. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  7. poj 3687(拓扑排序)

    http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...

  8. 拓扑排序 - 并查集 - Rank of Tetris

    Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...

  9. *HDU1285 拓扑排序

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

随机推荐

  1. Java中类变量(静态变量)和类方法(静态方法)

    类变量 类变量也叫静态变量或静态属性,是该类所有对象共享的变量任何一个该类的对象去访问它时,取得都是一样的值 语法: 访问修饰符  static  数据类型  变量名 static  访问修饰符  数 ...

  2. 请你说说Spring

    一. Spring是什么? 是一个轻量级的开源容器框架,用来装JavaBean,可以把其他的一些框架进行整合使用,使得开发更快,更简洁. 轻量级:占用空间小,非入侵式的(Spring中的对象不依赖于S ...

  3. uniapp 微信发送订阅消息

    这篇主要针对小程序进行演示,既然是发送消息,那么就有三个问题.发送什么内容,给谁发送,怎么发送!往下一条一条解决. 发送什么消息内容 - 通过微信公众号平台 选择对应的消息模板 选择以后在我的模板里面 ...

  4. suse 12 升级 OpenSSH-7.2p2 到 OpenSSH-8.4p1

    文章目录 1.查看当前当前环境信息 1.1.查看openssh当前版本 1.2.查看当前linux发行版 2.部署telnet-server 2.1.下载telnet-server 2.2.配置tel ...

  5. c++ StrVec等效vector(string)的类

    c++ StrVec等效vector<string>的类 知识点 静态成员变量要在类外定义和初始化 allocator类是使用和uninitialized_copy的配合使用,实现stri ...

  6. Linux性能优化之磁盘I/O性能指标

    讨论指标之前,得先解决两个概念:文件系统和磁盘I/O栈. 文件系统是什么?文件系统是在磁盘的基础上,提供了一个用来管理文件的树状结构.简言之,文件系统是树状结构,一种数据结构~逻辑上的概念.磁盘大家都 ...

  7. CPU平均负载率之stress模拟CPU密集型进程

    一.对CPU密集型进程进行模拟,具体如下: 第一个终端 在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:stress --cpu 1 -- timeout 600 第 ...

  8. [VSCode] Todo Tree VSCode插件 待办事项树

    Todo Tree 一款待办事项插件 我们写程序的时候,难免会遇到一些情况需要标记或者搁置,在写代码的时候会用一些特殊的注释来表示不同的内容,使我们可以快速的定位我们注释的位置. 主要有以下几种: T ...

  9. sql注入代码分析及预防

    sql注入的原因,表面上说是因为 拼接字符串,构成sql语句,没有使用 sql语句预编译,绑定变量.但是更深层次的原因是,将用户输入的字符串,当成了 "sql语句" 来执行. 1. ...

  10. 图解volatile

    volatile是什么 出去面试的时候,很多面试官都会问你:说说你对volatile的理解. 下面我将用图的方式告诉大家,volatile是什么? 如上图所示:每个线程都有自己的工作内存,同时还能访问 ...