FFT/NTT 学习笔记
0. 前置芝士
- 基础群论
- 复数
\(\mathbb C = \mathbb R[x^2+1]\)
则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb R\)
\(i^0=1;i^1=i;i^2=-1;i^3=-i;i^x=i^{x \bmod 4}(x \in \mathbb Z)\)
定理 0.1(欧拉公式)
\(e^{ik} = \cos k + i \sin k\)
证明:

(因为这里辛辛苦苦打出来的 \(\sf \LaTeX\) 炸了,所以放了个图,不是贺的)
定义 0.2(单位根)
\(\omega_k := e^{\frac{2\pi i}k}\) - 一些仅在本文生效的定义:
给定一个多项式 \(f(x)\) 和 \(i \le \deg f,f_i := \left\lfloor\dfrac f{x^i} \right\rfloor \bmod x\)。
本文中 \(f\) 和 \(f'\) 是两个函数,本文使用 \(\dfrac{{\rm d}f}{{\rm d}x}\) 表示导数。
1.引入
目标:求
\]
。
考虑取任意 \(\deg f + \deg g + 1\) 个复数 \(x_0,x_1,\dots,x_{\deg f + \deg g + 1}\),则有 \(h(x_i) = f(x_i)g(x_i)\),可以通过拉格朗日插值插回来(一般多项式题有 \(\deg f = \deg g\),且会 \(\bmod x^{\deg f+1}\),所以可以直接 \(x_0,x_1,\dots,x_{\deg f}\),之后的讲解以这种方法为主)
取 \(x_i = -\omega_{\deg f+1}^i\),则得到的 \(f(x_i) = \mathscr F f_i\)(此处 \(\mathscr F f\) 为长度为 \(\deg f+1\) 的序列而非多项式,且 \(\mathscr F f\) 的下标从 \(0\) 到 \(\deg f\))
插值部分不需要拉格朗日,有一个神奇的柿子:\(\mathscr{F}^{-1} f = \frac{1}{\deg f+1} \sum_{k=0}^{\deg f} { f}_k {\omega}^{k}_{\deg f}\)
构造方法见 IFFT,但是建议把 \(\mathscr {F F}^{-1} f\) 展开看看正确性,这里就不推了
这两种东西被叫做 DFT 和 IDFT,根据定义式计算复杂度为 \(\mathcal O(n^2)\)
2.FFT
常数优化
定理 2.1 一个多项式 \(f(x)\) 一定能分成两部分 \(f(x)=O(x)+E(x)\),使得 \(\forall x E(x)=E(-x) \wedge \forall x O(x) = -O(-x)\)
构造性证明:\(E(x) = f_0x^0+f_2x^2+f_4x^4+\cdots,O(x)=f_1x^1+f_3x^3+f_5x^5+\cdots\)。
P.S. 通过麦克劳林展开式,可以得到 \(f(x)\) 不一定是多项式。
定理 2.2 \(\omega_n^x=-\omega_n^{x+\frac n2}\)
证明:\(e^{\frac{2\pi i}n \times (x+\frac n2)}=e^{\frac{2\pi i}n \times x+ \frac{2\pi i}n \times \frac n2}=e^{\frac{2\pi}n \times x} \times e^{\pi i} = -e^{\frac{2\pi}n \times x} = -\omega^x_n\)。
所以我们计算 DFT 和 IDFT 的时候可以考虑少搞一半。
(因为这个定理在 FFT 的过程中要反复进行,所以这里建议把 \(f\) 补全到 \(2^n\) 项)。分治(递归)
考虑分治地去完成 DFT。取代那一半的暴力运算,考虑变换出那一段:wait,一半的单位根和整个函数怎么变换?
定理 2.3 \((\omega_n^x)^2 = \omega_{\frac n2}^x\)
证明:\((\omega_n^x)^2 = (\omega_n^{2x}) = e^{\frac{2\pi i}n \times 2x} = e^{\frac{2\pi i}{n/2} \times x} = \omega_{\frac n2}^x\)
如果,我们跳出那思维呢?
设 \(E_f(x) = f_0x^0+f_2x^2+f_4x^4+\cdots,O_f(x)=f_1x^1+f_3x^3+f_5x^5+\cdots\)
令 \(E'_f(x) = E_f(\sqrt{x}); O'_f(x)=\dfrac {O_f(\sqrt{x})}{\sqrt{x}}\)
,则 \(2\deg E'_f-1 = 2\deg O'_f-1 = \deg f\)
有 \(f(x) = E'_f(x^2) + \omega_{2^n} O'_f(x^2)\)
当 \(x\) 是 \(2^n\) 次单位根的时候,\(x^2\) 一定是 \(2^{n-1}\) 次单位根,而正好 \(\deg E'_f = \deg O'_f = 2^{n-1}-1\),所以进行递归,把 \(E'_f\) 和 \(O'_f\) 进行 FFT,就可以完成了。
边界条件:\(n=0\),此时多项式变为一个常数,直接返回这个常数就可以了。分治(非递归)
这里因为正好 \(\deg f = 2^n-1\)(有 \(2^n\) 项),所以可以考虑使用位运算。
看看 \(E'_f\) 的每一项(\(O'_f\) 同理):
\(E'_f = f_0x^0 + f_2x^1 + f_4x^2 + f_6x^3 + \cdots + f_{2^n-2}x^{2^{n-1}-1}\)
发现都是二进制中第 \(0\) 位为 \(0\) 的数
我们把 \(E'_f\) 和 \(O'_f\) 合并相当于把两个 \(2^{n-1}\) 项的数组合并,这样我们 \(\tt DP\) 地去做,定义 \(f_{i,s,j}\) 代表将两个 \(2^{i-1}\) 项式合并,这两个区间是 \([s, s+2^{i-1})\) 和 \([s+2^{i-1},s+2^i)\) 合并后 \(\omega_{2^i}^{j-s}\) 的结果。
发现 \(s\) 的个数 \(\times\) \(2^i\) 的个数 是 \(O(n)\) 的,而 \(j\) 的个数是 \(O(2^i)\) 的,于是可以进行下一步复杂度分析复杂度分析
对于递归版:
\(T(n) = 2T(\dfrac n2)+O(n) = O(n \log n)\)
证明:\(T(n) = O(n) + 2T(\dfrac n2) = O(n) + O(n) + 4T(\dfrac n4) = \cdots(\text{这个递归会有 log n 层})\cdots = \sum\limits^{\log n}_{i=0} O(n) = O(n \log n)\)
对于递推版:
\(T(n) = \sum\limits_{i=1}^{\log n} \sum\limits_{s=1}^{\frac n{2^i}} O(2^i) = \sum\limits_{i=1}^{\log n} O(\dfrac n{2^i} \times 2^i) = \sum\limits_{i=1}^{\log n} O(n) = O(n \log n)\)
3.IFFT
- IDFT 公式推导
还记得我们在开篇提到的那个柿子吗:
\(\mathscr{F}^{-1} f = \frac{1}{\deg f+1} \sum_{k=0}^{\deg f} { f}_k {\omega}^{k}_{\deg f}\)
它的推导方法如下:
定义 \(\bar f(x) = \sum_{i} (\mathscr{F} f)_i x^i\)
然后再对 \(\bar f\) 做一次 DFT(lhx 内心吐槽:这方法是给人想的吗,个人感觉 \(\bar f\) 在数学上没什么实际意义,还来给 \(\bar f\) DFT?are you crazy???)
设 \(N = \deg f + 1\)(注意和 \(n = \log_2 (N)\) 做区别)
\(\bar f(\omega_N^x) = \sum\limits_{i=0}^{N-1} (\omega_N^{-xi} (\mathscr{F}f)_i) = \sum\limits_{i=0}^{N-1} (\omega_N^{-xi} \sum\limits_{j=0}^{N-1} f_j \omega_N^{ij})\),粗体部分由于负负得正。
因为 \(\omega_N^{-xi}\) 相对 \(\sum\limits_{j=0}^{N-1} f_j \omega_N^{ij}\) 是常数,所以可以乘进去,也就是 \(\sum\limits_{i=0}^{N-1} \sum\limits_{j=0}^{N-1} f_j \omega_N^{-xi} \omega_N^{ij} = \sum\limits_{i=0}^{N-1} \sum\limits_{j=0}^{N-1} f_j ( \omega_N^i)^{j-x}\)
交换两个 \(\sum\),并把 \(f_j\) 提出去,得到 \(\sum\limits_{j=0}^{N-1} \left ( f_j \sum\limits_{i=0}^{N-1} ( \omega_N^i)^{j-x} \right ) = \sum\limits_{j=0}^{N-1} \left ( f_j \sum\limits_{i=0}^{N-1} ( \omega_N^{j-x})^i \right )\)
这里 \(\sum\limits_{i=0}^{N-1} ( \omega_N^{j-x})^i\) 是一个等比数列,套用等比数列求和公式 得到 \(\dfrac{1 - \omega_N^{(j-x)N}}{1 - \omega_N^{j-x}} = \dfrac{1 - 1}{1 - \omega_N^{j-x}} = 0\),但是有一个条件,就是 \(\omega_N^{j-x} \ne 1\),如果 \(\omega_N^{j-x} = 1\),则答案为 \(n\),于是我们得到 \(\sum\limits_{j=0}^{N-1} [j \equiv x \pmod N]N \times f_j = f_x \times N\),于是我们得到一个离谱的结论:IFFT 就是先将单位根取倒数的 FFT。 - 实现
定理 1.1 \(\omega_N^a = \omega_N^{n \bmod N}\)
证明:\(\omega_N^a = \omega_N^{\lfloor a/N\rfloor N+a \bmod N}=\omega_N^{\lfloor a/N\rfloor N}\omega_{N}^{n \bmod N} = (\omega_N^N)^{\lfloor a/N\rfloor} \omega_{N}^{n \bmod N} = 1^{\lfloor a/N\rfloor} \omega_{N}^{n \bmod N} = \omega_{N}^{n \bmod N}\)
定理 1.2 \(\omega_N^{-a} = (\omega_N^{a})^{-1}\)
证明:\(\omega_N^{-a} = \omega_N^{(-a) \bmod N} = \omega_N^{N-a} = e^{i\pi\frac{2(N-a)}{N}} = e^{i\pi\frac{2N-2a}{N}} = e^{\frac{i\pi2N}{N}-\frac{i2\pi a}{N}} = e^{2\pi i} \div e^{2\pi i \times \frac aN} = (\omega_N^{a})^{-1}\)
于是我们可以通过 FFT 时 \(-a\) 改成 \(a\) 即可,或者说,\(Ia\),其中 \(I=-1\) 代表 FFT,\(I=1\) 代表 IFFT。 - 应用
\(O(n \log n)\) \(\bmod x^N\) 多项式乘除法:
因为点值表示法可以直积/直商,所以先对两个多项式FFT,直积/直商后IFFT回去就可以。
4.NTT
定义 \(\delta_p x(p \perp x) = \min\{i:x^i \bmod p = 1\}\)。
因为 \(x^{\varphi(p)} \bmod p=1(p \perp x)\),所以 \(\delta_p x \le \varphi(i)\)。
那么,有一些整数,满足 \(\delta_p x = \varphi(i)\),这种 \(x\) 就被称为是 \(p\) 的原根(可能不唯一)。
经常进行 NTT 的模数为 \(P=998244353=119 \cdot 2^{23}+1\),其原根为 \(g=3\)。
令 \(q = 119\),\(r = 23\),以下同余式若未标明模数默认为 \(P\)。
有 \(P-1=q2^r\),又因为长度经常为 \(N = \deg f+1 = 2^n\),所以两边除上一个 \(2^n\),得到 \(\dfrac {P-1}N = q2^{r-n}\)
令 \(q' = q2^{r-n}\),令 \(\rho_N \equiv g^{q'}\),发现 \(\omega_N\) 和 \(\rho_N\) 具有同样的性质,或者说 \(\langle \{0 \le i< n\mid\omega^i\},\times \rangle\) 和 \(\langle \{0 \le i < n\mid\omega^i\},\overset\bmod\times \rangle\) 这两个群同构。
Lemma 1: \(\rho_N^{i}\) 两两不同(证明:由于原根的性质,所以 \(\rho_N^i \equiv \rho_N^j \iff g^{q'i} \equiv g^{q'j} \iff q'i \equiv q'j \pmod {P-1} \iff (P-1) \mid q' (i-j)\)。
证明:构造双射 \(f(\omega_N^x) = \rho_N^x\),有 \(f(\omega_N^x) f(\omega_N^y) = \rho_N^x \times \rho_N^y = \rho^{(x+y) \bmod N} = f(\omega_N^{(x+y) \bmod N}) = f(\omega_N^x\omega_N^y)\)
5.卷积
6.Misc(多项式全家桶)
\(\aleph_0\). 例题讲解
P3803
题意简述:给定多项式 \(f(x),g(x)\),求 \(h(x) = f(x)g(x)\)。
讲解:就是个板子 发现 \(h(x)\) 的定义式 \(f(x)g(x)\) 恰好是点值乘法,于是 将 \(f,g\) FFT 然后乘起来 IFFT 回去就行了。
P1919
题意简述:给定大整数 \(x,y \le 10^{10^6}\),求 \(z = xy\)。
讲解:也是个板子 将大整数拆位当作多项式处理,此时得到的 \(Z(x) = X(x)Y(x)\) 会满足 \(Z(10) = xy\),但是我们不能直接算 \(Z(10)\),不然直接 \(\log^2 (x+y)\) 爆掉。于是考虑把进位一位一位传上去,这样复杂度可以接受。
P3338
题意简述:
给出 \(n\) 个实数 \(q_1,q_2, \dots q_n\),求对于每一个 \(j\),
\]
,考虑凑成乘法形式
FFT/NTT 学习笔记的更多相关文章
- FFT&NTT学习笔记
具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...
- FFT、NTT学习笔记
参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
- NTT学习笔记
和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...
- NTT 学习笔记
引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...
随机推荐
- SAP -SE30 程序运行时间分析
运行SE30 选中Program,点击Excute 点击运行 分析结果
- go-zero微服务实战系列(八、如何处理每秒上万次的下单请求)
在前几篇的文章中,我们花了很大的篇幅介绍如何利用缓存优化系统的读性能,究其原因在于我们的产品大多是一个读多写少的场景,尤其是在产品的初期,可能多数的用户只是过来查看商品,真正下单的用户非常少.但随着业 ...
- 配置svn,httpd启动报错 Job for httpd.service failed because the control process exited with error code. See "systemctl status httpd.service" and "journalctl -xe" for details.
查看httpd的状态,发现80端口被占用,因为我的nginx的80端口. systemctl status httpd.service 解决: 把Apache的端口该成别的端口 vi /etc/ht ...
- 什么是pytorch?
Pytorch是基于python的科学计算包,为两类受众提供服务 作为Numpy的替换,让你可以使用GPU的算力 作为一个深度学习计算平台提供最大的计算灵活性与速度 开始体验pytorch的基础功能 ...
- 霍普菲尔得神经网络(Hopfield Neural Network)
设计一个反馈网络存储下列目标平衡点: T = [ 1 -1; -1 1 ]; 并用6组任意随机初始列矢量,包括一组在目标平衡点连线的垂直平分线上的一点作为输入矢量对所设计的网络的平衡点进行测试,观 ...
- 使用 spring-security-oauth2 体验 OAuth 2.0 的四种授权模式
目录 背景 相关代码 授权码模式 第一步 访问GET /oauth/authorize 第二步 访问POST /oauth/authorize 第三步 访问POST /oauth/token 简化模式 ...
- 2022-7-14 java_2 第七组 刘昀航
@ 目录 一.java约定规范 1.关于建包 2.控制台输入(Scanner) 关于Scanner的bug 计算器小练习: 二. 1.数组 建立数组的三种方式: 数据类型的初始值: 2.二维数组 使用 ...
- Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...
- AtCoder Beginner Contest 247 F - Cards // dp + 并查集
原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...
- SpringBoot连接MySQL配置(yml)?
SpringBoot连接MySQL 需要导入的依赖 <!--这是直接在创建springboot项目时直接勾选生成的--><!--jdbc--><dependency> ...