Problem Description
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
 
Input
In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
 
Output
For each test,output the number of groups.
 
Sample Input
2 4 2 3 1 2 4 10 5 0 3 4 5 2 1 6 7 8 9
 
Sample Output
5 28
 
 
#include <cstdio>
#include <map>
#include <iostream>
#include<cstring>
#include<bits/stdc++.h>
#define ll long long int
#define M 6
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int maxn[][],minn[][];
void preST(int n){
for(int i=;i<=n;i++){
maxn[i][]=a[i];
minn[i][]=a[i];
}
int m=log(n)/log()+;
for(int j=;j<m;j++)
for(int i=;i<=(n-(<<j)+);i++){
maxn[i][j]=max(maxn[i][j-],maxn[i+(<<(j-))][j-]);
minn[i][j]=min(minn[i][j-],minn[i+(<<(j-))][j-]);
}
}
int queryST1(int l,int r){
int k=log(r-l+)/log();
return max(maxn[l][k],maxn[r-(<<k)+][k]);
}
int queryST2(int l,int r){
int k=log(r-l+)/log();
return min(minn[l][k],minn[r-(<<k)+][k]);
}
int main(){
//ios::sync_with_stdio(false);
int t;
scanf("%d",&t);
while(t--){
int n,k;
scanf("%d%d",&n,&k);;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);;
preST(n);
ll ans=;
int l,r;
for(int i=;i<=n;i++){
int pos;
l=i; r=n;
while(l<=r){
int mid=(l+r)>>;
int mm=queryST1(i,mid);
int nn=queryST2(i,mid);
if(mm-nn<k){
l=mid+;
pos=mid;
}
else r=mid-;
}
ans+=(l-i);
}
printf("%lld\n",ans);
}
}

hdu 5289 Assignment (ST+二分)的更多相关文章

  1. HDU 5289 Assignment(二分+RMQ-ST)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. HDU - 5289 Assignment (RMQ+二分)(单调队列)

    题目链接: Assignment  题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...

  3. HDU 5289 Assignment (二分+区间最值)

    [题目链接]click here~~ [题目大意]: 给出一个数列,问当中存在多少连续子序列,子序列的最大值-最小值<k [思路]:枚举数列左端点.然后二分枚举右端点,用ST算法求区间最值.(或 ...

  4. HDU 5289 Assignment [优先队列 贪心]

    HDU 5289 - Assignment http://acm.hdu.edu.cn/showproblem.php?pid=5289 Tom owns a company and he is th ...

  5. HDU 5289 Assignment (ST算法区间最值+二分)

    题目链接:pid=5289">http://acm.hdu.edu.cn/showproblem.php?pid=5289 题面: Assignment Time Limit: 400 ...

  6. hdu 5289 Assignment(2015多校第一场第2题)RMQ+二分(或者multiset模拟过程)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给你n个数和k,求有多少的区间使得区间内部任意两个数的差值小于k,输出符合要求的区间个数 ...

  7. HDU 5289 Assignment(2015 多校第一场二分 + RMQ)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  8. HDU 5289 Assignment (数字序列,ST算法)

    题意: 给一个整数序列,多达10万个,问:有多少个区间满足“区间最大元素与最小元素之差不超过k”.k是给定的. 思路: 如果穷举,有O(n*n)复杂度.可以用ST算法先预处理每个区间最大和最小,O(n ...

  9. HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 Problem Description Tom owns a company and he is ...

随机推荐

  1. MySQL数据性能优化-修改方法与步骤

    原文:http://bbs.landingbj.com/t-0-240421-1.html 数据库优化应该是每个设计到数据库操作应用必须涉及到的操作. 经常调试修改数据库性能主要有三个方面 1.MyS ...

  2. Mysql占用CPU过高如何优化?(转)

    原文:http://bbs.landingbj.com/t-0-241441-1.html MySQL处在高负载环境下,磁盘IO读写过多,肯定会占用很多资源,必然CP会U占用过高. 占用CPU过高,可 ...

  3. async并发处理

  4. a标签中的onclick和href的使用

    onclick和href 链接的 onclick 事件被先执行,其次是 href 属性下的动作(页面跳转,或 javascript 伪链接):  假设链接中同时存在 href 与 onclick,如果 ...

  5. Jenkins系统上的时间不正确问题

    很简单,点击系统管理,选择执行脚本命令: 打开 [系统管理]->[脚本命令行]运行下面的命令 System.setProperty('org.apache.commons.jelly.tags. ...

  6. npm install、npm install --save与npm install --save-dev区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...

  7. python(Django之Logging、API认证)

    一.Loging模块 用于方便的记录日志的模块 import logging logging.basicConfig(filename='log.log', format='%(asctime)s - ...

  8. NFS配置与搭建

    参考: Linux下NFS服务器的搭建与配置 https://www.cnblogs.com/liuyisai/p/5992511.html http://blog.51cto.com/hongten ...

  9. IWMS后台上传文章,嵌入音频文件代码

    <object width="260" height="69" classid="clsid:6bf52a52-394a-11d3-b153-0 ...

  10. Python自动化运维ansible从入门到精通

    1. 下载安装 在windows下安装ansible: