Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8638  Solved: 3327
[Submit][Status][Discuss]

Description

  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

  第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

HINT

 

Source

我的思路:

对于一条直线,如果看不见,有且仅有两种情况

一:被一条斜率相同,但是$b$比它大的直线遮挡住

二:被两条交叉的直线遮挡住,也就是下面这种情况

对于第一种情况,直接判断即可

对于第二种情况,直接处理有一些麻烦,所以我们考虑首先按照斜率从小到大排序

同时维护一个栈

如果当前直线与栈顶元素的前一个元素的交点 比 栈顶元素和栈顶前一个元素的交点 的横坐标 靠左,那么栈顶的前一个元素就没用了

最后统计栈中有哪些元素就可以

有点类似于单调栈

时间复杂度:$O(n)$

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = ;
const double eps = 1e-;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -;c = getchar();}
while(c >= '' && c <= '') {x = x * + c - '';c = getchar();}
return x * f;
}
int N;
struct Seg {
int ID;
double k, b;
bool operator < (const Seg &rhs) const {
return fabs(k - rhs.k) <= eps ? b < rhs.b : k < rhs.k;
}
}a[MAXN], S[MAXN];
int top = ;
int Ans[MAXN];
double X(Seg x, Seg y) {
return (y.b - x.b) / (x.k - y.k);
}
void Solve() {
fill(Ans + , Ans + N + , );
S[++top] = a[];
for(int i = ; i <= N; i++) {
while( ( fabs(a[i].k - S[top].k) <= eps)
|| (top > && X(a[i], S[top - ]) <= X(S[top - ], S[top])))
Ans[S[top].ID] = , top--;
S[++top] = a[i];
}
}
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#else
//freopen("bzoj_1007.in","r",stdin);
//freopen("bzoj_1007.out","w",stdout);
#endif
N = read();
for(int i = ; i <= N; i++)
a[i].k = read(), a[i].b = read(), a[i].ID = i;
sort(a + , a + N + );
Solve();
for(int i = ; i <= N; i++)
if(Ans[i] == )
printf("%d ",i);
return ;
}

BZOJ1007: [HNOI2008]水平可见直线(单调栈)的更多相关文章

  1. bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳

    在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...

  2. bzoj1007 [HNOI2008]水平可见直线——单调栈

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...

  3. [HNOI2008]水平可见直线 单调栈

    题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...

  4. bzoj1007/luogu3194 水平可见直线 (单调栈)

    先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...

  5. [bzoj1007][HNOI2008]水平可见直线_单调栈

    水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...

  6. BZOJ1007:[HNOI2008]水平可见直线(计算几何)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  7. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  8. bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com

    Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...

  9. [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. HTML页面中插入CSS样式的三种方法

    1. 外部样式 当样式需要应用于很多页面时,外部样式表将是理想的选择.在使用外部样式表的情况下,你可以通过改变一个文件来改变整个站点的外观.每个页面使用<link>标签链接到样式表. &l ...

  2. 全栈开发工程师微信小程序-中(中)

    全栈开发工程师微信小程序-中(中) 开放能力 open-data 用于展示微信开放的数据 type 开放数据类型 open-gid 当 type="groupName" 时生效, ...

  3. java IO流之详细总结

    什么是io流? 分为两种: 输入流:可以从文件中读取到程序,从源数据源读取到程序,叫做输入流. 输出流:可以从程序中读取到文件,从程序写,使用输出流,写入到文件中.叫做输出流. 使用File操作文件或 ...

  4. javaScript之实战 页面筛选功能

    友情提示:gif图太小,可以ctrl 加 +键 放大  成品如下: 开始搭建 html  和  css html代码如下: <!DOCTYPE html> <html lang=&q ...

  5. 一文了解Python中的循环(for while break continue 嵌套循环...)

    循环 目标 程序的三大流程 while 循环基本使用 break 和 continue while 循环嵌套 01. 程序的三大流程 在程序开发中,一共有三种流程方式: 顺序 —— 从上向下,顺序执行 ...

  6. Git+Hexo搭建个人博客详细过程

    通过Git+Hexo搭建的个人博客地址:https://liangh.top/ 1.安装Node.js.配置好Node.js环境.安装Git和配置好Git环境,打开cmd命令行,成功界面如下 2.安装 ...

  7. ASP.NET Core微服务+Tabler前端框架搭建个人博客2--系统架构

    功能分析 在整个微服务架构的搭建过程中,我们需要做的第一步就是对服务进行拆分,将一个完整的系统模块化,通过对各个模块互联,共同完成一个系统的工作.既然要做到模块化,那么必须明白你的系统的需求到底是什么 ...

  8. parseInt和map方法使用案例分析

    ["1","2","3"].map(parseInt) //[1,NaN,NaN] 先看map()方法 定义和用法 map() 方法返回一个 ...

  9. Ocelot简易教程(五)之集成IdentityServer认证以及授权

    Ocelot简易教程目录 Ocelot简易教程(一)之Ocelot是什么 Ocelot简易教程(二)之快速开始1 Ocelot简易教程(二)之快速开始2 Ocelot简易教程(三)之主要特性及路由详解 ...

  10. Zabbix系列之五——监控TCP端口

    监控端口的几个主要Keys: net.tcp.listen[port] Checks if this port is in LISTEN state. 0 - it is not, 1 - it is ...