Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8638  Solved: 3327
[Submit][Status][Discuss]

Description

  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

  第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

HINT

 

Source

我的思路:

对于一条直线,如果看不见,有且仅有两种情况

一:被一条斜率相同,但是$b$比它大的直线遮挡住

二:被两条交叉的直线遮挡住,也就是下面这种情况

对于第一种情况,直接判断即可

对于第二种情况,直接处理有一些麻烦,所以我们考虑首先按照斜率从小到大排序

同时维护一个栈

如果当前直线与栈顶元素的前一个元素的交点 比 栈顶元素和栈顶前一个元素的交点 的横坐标 靠左,那么栈顶的前一个元素就没用了

最后统计栈中有哪些元素就可以

有点类似于单调栈

时间复杂度:$O(n)$

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = ;
const double eps = 1e-;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -;c = getchar();}
while(c >= '' && c <= '') {x = x * + c - '';c = getchar();}
return x * f;
}
int N;
struct Seg {
int ID;
double k, b;
bool operator < (const Seg &rhs) const {
return fabs(k - rhs.k) <= eps ? b < rhs.b : k < rhs.k;
}
}a[MAXN], S[MAXN];
int top = ;
int Ans[MAXN];
double X(Seg x, Seg y) {
return (y.b - x.b) / (x.k - y.k);
}
void Solve() {
fill(Ans + , Ans + N + , );
S[++top] = a[];
for(int i = ; i <= N; i++) {
while( ( fabs(a[i].k - S[top].k) <= eps)
|| (top > && X(a[i], S[top - ]) <= X(S[top - ], S[top])))
Ans[S[top].ID] = , top--;
S[++top] = a[i];
}
}
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#else
//freopen("bzoj_1007.in","r",stdin);
//freopen("bzoj_1007.out","w",stdout);
#endif
N = read();
for(int i = ; i <= N; i++)
a[i].k = read(), a[i].b = read(), a[i].ID = i;
sort(a + , a + N + );
Solve();
for(int i = ; i <= N; i++)
if(Ans[i] == )
printf("%d ",i);
return ;
}

BZOJ1007: [HNOI2008]水平可见直线(单调栈)的更多相关文章

  1. bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳

    在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...

  2. bzoj1007 [HNOI2008]水平可见直线——单调栈

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...

  3. [HNOI2008]水平可见直线 单调栈

    题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...

  4. bzoj1007/luogu3194 水平可见直线 (单调栈)

    先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...

  5. [bzoj1007][HNOI2008]水平可见直线_单调栈

    水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...

  6. BZOJ1007:[HNOI2008]水平可见直线(计算几何)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  7. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  8. bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com

    Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...

  9. [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. CCS3怎么实现border边框渐变效果

    下图注册按钮的边框有渐变效果,如果让你来实现,你会怎么做呢 个人觉得,省事的做法,直接让UI给背景图片就可以了,如下图 不过这种做法感觉不太灵活,如果要修改border的渐变颜色,就需要UI重新做图. ...

  2. Enum扩展特性,代替中文属性

    由于对英语的天生缺陷,在枚举时一直使用中文,这样就不用看注释就知道枚举意思,今天看到博文 https://www.cnblogs.com/emrys5/p/Enum-rename-htmlhelper ...

  3. springboot集成quartz定时任务课动态执行

    <dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</ ...

  4. Testing - 自动化测试的几个基础概念

    自动化测试框架与模型 一个自动化测试框架就是一个集成体系,在这一体系中包含测试功能的函数库.测试数据源.测试对象识别标准,以及种可重用的模块. 自动化测试框架在发展的过程中经历了几个阶段,模块驱动测试 ...

  5. Spring框架(1)---Spring入门

    Spring入门 为了能更好的理解先讲一些有的没的的东西: 什么是Spring Spring是分层的JavaSE/EE full-stack(一站式) 轻量级开源框架 分层 SUN提供的EE的三层结构 ...

  6. sql server 索引阐述系列八 统计信息

    一.概述 sql server在快速查询值时只有索引还不够,还需要知道操作要处理的数据量有多少,从而估算出复杂度,选择一个代价小的执行计划,这样sql server就知道了数据的分布情况.索引的统计值 ...

  7. sql server 性能调优之 资源等待PAGEIOLATCH

    一.概念 在介绍资源等待PAGEIOLATCH之前,先来了解下从实例级别来分析的各种资源等待的dmv视图sys.dm_os_wait_stats.它是返回执行的线程所遇到的所有等待的相关信息,该视图是 ...

  8. GitHub学习系列之如何删除那些不打算要的项目(图文详解)

    不多说,直接上干货! 1.选择我们要删除的项目: 接下来我们就删除 zlslch下面的这个hello项目.从这个项目的名字中就可以看出来,好像就是为了删除而创建的.点击右上方红框中的Settings. ...

  9. Apache Flume 1.7.0 自定义输入输出

    自定义http source config a1.sources.r1.type=http a1.sources.r1.bind=localhost a1.sources.r1.port= a1.so ...

  10. 敏感词汇过滤DFA算法

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...