【APIO2018】铁人两项
【APIO2018】铁人两项
大意就是给定一张无向图,询问三元组\((s,c,f)\)中满足\(s\neq c\neq f\)且存在\((s\to c\to f)\)的简单路径(每个点最多经过一次)的数量。
\(1\leq n,\leq 10^5,1\leq m\leq 2*10^5\)
我们考虑枚举\(s,f\)然后计算中间\(c\)的数量。我们发现对于一张图上统计两点之间路径上的点数量很好做。于是我们考虑建圆方树。
我们将圆点的权值定为\(-1\),将方点的权值定为与其直接相连的圆点的数量。\(u\)到\(v\)路径上可能经过的点的数量就是圆方树上\(u\to v\)路径上除了\(u,v\)的点权之和\(-2\)。
于是我们用树形\(\text{DP}\),计算每个点对答案的贡献。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 200005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int tot;
struct graph {
int to[N<<2],nxt[N<<2];
int h[N],cnt;
void add(int i,int j) {
to[++cnt]=j;
nxt[cnt]=h[i];
h[i]=cnt;
}
}s,g;
int dfn[N],low[N],id;
int st[N];
int val[N];
void work(int v,int to) {
tot++;
g.add(v,tot);
val[tot]=1;
while(1) {
int j=st[st[0]--];
val[tot]++;
g.add(tot,j);
if(j==to) return ;
}
}
ll tot_size;
void tarjan(int v,int fr) {
tot_size++;
dfn[v]=low[v]=++id;
st[++st[0]]=v;
for(int i=s.h[v];i;i=s.nxt[i]) {
int to=s.to[i];
if(to==fr) continue ;
if(!dfn[to]) {
tarjan(to,v);
low[v]=min(low[v],low[to]);
if(low[to]>=dfn[v]) {
work(v,to);
}
} else low[v]=min(low[v],dfn[to]);
}
}
ll ans;
int size[N];
void dfs(int v) {
int tim=0;
for(int i=g.h[v];i;i=g.nxt[i]) {
int to=g.to[i];
dfs(to);
ans+=1ll*val[v]*size[v]*size[to];
tim+=size[v]*size[to];
size[v]+=size[to];
}
if(v<=n) size[v]++;
if(v<=n) {
tim+=(size[v]-1)*(tot_size-size[v]);
ans+=1ll*val[v]*(size[v]-1)*(tot_size-size[v]);
} else {
tim+=size[v]*(tot_size-size[v]);
ans+=1ll*val[v]*size[v]*(tot_size-size[v]);
}
}
int main() {
n=Get(),m=Get();
tot=n;
int a,b;
for(int i=1;i<=m;i++) {
a=Get(),b=Get();
s.add(a,b),s.add(b,a);
}
for(int i=1;i<=n;i++) val[i]=-1;
for(int i=1;i<=n;i++) {
if(dfn[i]) continue ;
tot_size=0;
tarjan(i,0);
dfs(i);
ans-=1ll*tot_size*(tot_size-1);
}
cout<<ans*2;
return 0;
}
【APIO2018】铁人两项的更多相关文章
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- [BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树
分析 根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取. 建出圆方树后,因为圆方树上 ...
- 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...
- [BZOJ5463] [APIO2018] 铁人两项
题目链接 LOJ. BZOJ. Solution 先建圆方树. 我们考虑暴力,枚举一个点对,我们枚举的点都是圆点,然后统计中间那个点可以取的位置的数量,加起来就是答案. 那么怎么统计呢,我们对于每个点 ...
- LOJ2587:[APIO2018]铁人两项——题解
https://loj.ac/problem/2587#submit_code (题面来自LOJ) 考试时候发觉树很可做,并且写了一个dp骗到了树的分. 苦于不会圆方树……现在回来发现这题还是很可做的 ...
随机推荐
- JQuery官方学习资料(译):操作元素
获取和设置元素的信息 有很多种方式可以改变现有的元素,最常见的是改变HTML内容或者元素的属性.JQuery提供了简单的夸浏览器的方法来帮助你实现元素信息的获取和设置. .html():获 ...
- nodeJs express mongodb 建站(linux 版)
一.环境安装 1.安装node wget http://nodejs.org/dist/v0.12.2/node-v0.12.2-linux-x64.tar.gz //下载tar xvf node-v ...
- js 判断数组中是否有重复值
function arrHasvalue(arr) { var nary = arr.sort(); for (var i = 0; i < arr.length; i++) { if (nar ...
- es6 语法 (数值扩展)
{ //二进制数值都是0b开头,八进制0o console.log(0b111110111) console.log(0o767); } { console.log('15',Number.isFin ...
- CentOS7 离线安装MySQL
1.删除原有的mariadb 不然安装报错 rpm -qa|grep mariadb rpm -e --nodeps mariadb-libs 2. 下载RPM安装包 在https://dev.mys ...
- 一个AI产品经理怎么看AI的发展
一个AI产品经理怎么看AI的发展 https://www.jianshu.com/p/bed6b22ae837 最近一直在思考这个问题,人工智能接下来的几年会有什么样的发展,是否真的能够在很多工作岗位 ...
- java 不使用paint方法进行画图
private Graphics2D g; g = (Graphics2D) getGraphics();
- Deep Learning - 3 改进神经网络的学习方式
反向传播算法是大多数神经网络的基础,我们应该多花点时间掌握它. 还有一些技术能够帮助我们改进反向传播算法,从而改进神经网络的学习方式,包括: 选取更好的代价函数 正则化方法 初始化权重的方法 如何选择 ...
- springboot 学习之路 1(简单入门)
目录:[持续更新.....] spring 部分常用注解 spring boot 学习之路1(简单入门) spring boot 学习之路2(注解介绍) spring boot 学习之路3( 集成my ...
- 测者的性测试手册:SWAP的监控
swap是什么 swap是磁盘上的一块区域,可以使一个磁盘分区,也可以是一个文件,也可能是一个两种的组合.当物理内存资源紧张的时候,操作系统(Linux)会将一些不常访问的数据放到swap里.为其他常 ...