> 目  录 

 > 笔  记 

Agent–Environment Interface

MDPs are meant to be a straightforward framing of the problem of learning from interaction to achieve a goal. The learner and decision maker is called the agent. The thing it interacts with, comprising everything outside the agent, is called the environment. These interact continually, the agent selecting actions and the environment responding to these actions and presenting new situations to the agent.1 The environment also gives rise to rewards, special numerical values that the agent seeks to maximize over time through its choice of actions.

More specifcally, the agent and environment interact at each of a sequence of discrete time steps, t = 0,1,2,.... At each time step t, the agent receives some representation of the environment's state, $S_{t}\in S$, where $S$ is the set of possible states, and on that basis selects an action, $A_{t}\in A(S_{t})$, where $A(S_{t})$ is the set of actions available in state $S_{t}$. One time step later, in part as a consequence of its action, the agent receives a numerical reward, $R_{t+1}\in R \subset \mathbb{R}$, and finds itself in a new state, $S_{t+1}$.

At each time step, the agent implements a mapping from states to probabilities of selecting each possible action. This mapping is called the agent's policy and is denoted $\pi_{t}(a|s)$ is the probability that $A_{t}=a$ if $S_{t}=s$. Reinforcement learning methods specify how the agent changes its policy as a result of its experience. The agent's goal, roughly speaking, is to maximize the total amount of reward it receives over the long run.

the actions are the choices made by the agent; the states are the basis for making the choices; and the rewards are the basis for evaluating the choices.

图1. agent-environment interaction in a MDP

马尔可夫性(Markov property): 如果state signal具有马尔科夫性,那么当前状态只跟上一状态有关,它包含了所有从过去经历中得到的信息。马尔可夫性对RL而言很重要,∵decisions和values通常都被认为是一个只跟当前state相关的函数。

MDP的动态性:$p(s',r|s,a)=Pr\left \{ S_{t}=s',R_{t}=r|S_{t-1}=s,A_{t-1}=a  \right \}$,

where $ \underset{s'\in S \ r\in R}{\sum \sum}p(s',r|s,a)=1 $, for all $s\in S$,  $a\in A(s)$.

基于the dynamics of the MDP, 我们可以很容易地得到状态转移概率(state-transition probabilities, $p(s'|s,a)$),state-action的期望回报(the expected rewards for state–action pairs, $r(s,a)$),以及state-action-next state的期望回报(the expected rewards for state–action-next state, $r(s,a,s')$)。

Goals and Rewards

agent的goal是以一个从environment传递给agent的reward signal的形式存在的。我们通过定义reward signal的值,可以实现跟agent的交流,告诉它what you want it to achieve, not how you want it achieved。

Agent的目标是最大化total reward。因此,最大化的不是immediate reward,而是cumulative reward in the long run。

Returns and Episodes

The return is the function of future rewards that the agent seeks to maximize (in expected value). return有多种形式,取决于task本身和是否希望对回报进行折扣。

Expected return: $G_{t}=R_{t+1}+R_{t+2}+...+R_{T}$, where T is a final time step。适合于episodic tasks。

Episodic tasks: each episode ends in the terminal state, followed by a reset to a standard starting state or a sample from a standard distribution of starting states.

Continuing tasks: the agent–environment interaction doesn’t break naturally into identifiable episodes, but goes on continually without limit.

Expected discounted return: $G_{t}=R_{t+1}+\gamma R_{t+2}+ \gamma ^{2}R_{t+3}+...=\sum_{k=0}^{\infty}\gamma ^{k}R_{t+k+1}$。其中,折扣率(discount rate, $\gamma$)决定了未来rewards的当前价值。适合于continuing tasks。

Policies and Value Functions

Value functions: functions of states (or state-action pairs) that estimate how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state). The notion of “how good” here is defined in terms of future rewards that can be expected, or, in terms of the expected return from that state (or state-action pair).

Policy: a mapping from states to probabilities of selecting each possible action. If the agent is following policy $\pi$ at time t, then $\pi(a|s)$ is the probability that $A_{t} = a$ if $S_{t} = s$.

the value function of a state s under a policy $\pi$: (i.e. the expected return when starting in s and following $\pi$ thereafter)

We call  the function $ v_{\pi}$ is the state-value function for policy $\pi$

the value of taking action a in state s under a policy $\pi$: (i.e. the expected return starting from s, taking the action a, and thereafter following policy $\pi$)

We call  $ q_{\pi}$ the action-value function for policy $\pi$

Bellman equation for $v_{\pi}$: It expresses a relationship between the value of a state and the values of its successor states.

      

Optimal Policies and Optimal Value Functions

Value functions define a partial ordering over policies. $\pi> \pi'$ if and only if $v_{\pi}(s) > v_{\pi'}(s)$, for all $s \in S$. The optimal value functions assign to each state, or state–action pair, the largest expected return achievable by any policy.

Optimal policy $\pi_{*}$:A policy whose value functions are optimal. There is always at least one (can be many) policy that is better than or equal to all other policies.

Optimal state-value function:

Optimal action-value function:

用$v_{*}$来表示$q_{*}$:

Any policy that is greedy with respect to the optimal value functions must be an optimal policy. The Bellman optimality equations are special consistency conditions that the optimal value functions must satisfy and that can, in principle, be solved for the optimal value functions.

Bellman optimality equatio for $v_{*}$

Bellman optimality equatiofor $q_{*}$

Backup diagrams for $v_{*}$ and $q_{*}$:

Reinforcement Learning: An Introduction读书笔记(3)--finite MDPs的更多相关文章

  1. Reinforcement Learning: An Introduction读书笔记(4)--动态规划

     > 目  录 <  Dynamic programming Policy Evaluation (Prediction) Policy Improvement Policy Iterat ...

  2. Reinforcement Learning: An Introduction读书笔记(1)--Introduction

      > 目  录 <   learning & intelligence 的基本思想 RL的定义.特点.四要素 与其他learning methods.evolutionary m ...

  3. Reinforcement Learning: An Introduction读书笔记(2)--多臂机

     > 目  录 <  k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...

  4. 《Machine Learning Yearing》读书笔记

    ——深度学习的建模.调参思路整合. 写在前面 最近偶尔从师兄那里获取到了吴恩达教授的新书<Machine Learning Yearing>(手稿),该书主要分享了神经网络建模.训练.调节 ...

  5. Machine Learning for hackers读书笔记(六)正则化:文本回归

    data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...

  6. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  7. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  8. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

  9. Machine Learning for hackers读书笔记(十)KNN:推荐系统

    #一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...

随机推荐

  1. 7.首页、bitmaputils

    HomeProtocol public class HomeProtocol extends BaseProtocol<List<AppInfo>>{ // 1 把整个json ...

  2. puppet-type

    puppet语法-type Table of Contents Custom Source 基本技能要求 Types简介 Type-Documentation Type-Properties Type ...

  3. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  4. mysql 开发进阶篇系列 4 SQL 优化(各种优化方法点)

    1 通过handler_read 查看索引使用情况 如果索引经常被用到 那么handler_read_key的值将很高,这个值代表了一个行被索引值读的次数, 很低的值表明增加索引得到的性能改善不高,索 ...

  5. 基于Electron+.NET Core的前后端分离的跨平台桌面应用

    Web做界面比原生桌面界面开发速度真心要快很多,而且组件也多. 分析: 1..NET Core和Electron都是跨平台的. 2.NET Core做后端很方便,但是没有GUI,Electron做桌面 ...

  6. 配置babel

    配置babel ECMAScript的版本,每年都会定期举行会议,发布各种标准,当前版本到了2019,但大部分人使用的浏览器,都可以支持es2015,也就是es6,要等到大部分浏览器都支持到最新版本, ...

  7. python练习六—简单的论坛

    进行简单的web应用之后,接下来就应该学习python连接数据库,这个练习就是在上个练习的基础上将信息保存到数据库,这个联系也没有什么特别的,有之前java web的经验的话,很好理解,主要还是一个M ...

  8. Spring之BeanPostProcessor(后置处理器)介绍

      为了弄清楚Spring框架,我们需要分别弄清楚相关核心接口的作用,本文来介绍下BeanPostProcessor接口 BeanPostProcessor   该接口我们也叫后置处理器,作用是在Be ...

  9. Python和Java编程题(六)

    1.题目:猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个 第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第10天早上想再吃时, ...

  10. 翻译:非递归CTE(已提交到MariaDB官方手册)

    本文为mariadb官方手册:非递归CTE的译文. 原文:https://mariadb.com/kb/en/library/non-recursive-common-table-expression ...