import numpy as np
import matplotlib.pyplot as plt from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model,discriminant_analysis def load_data():
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #线性判断分析LinearDiscriminantAnalysis
def test_LinearDiscriminantAnalysis(*data):
X_train,X_test,y_train,y_test=data
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)
print('Coefficients:%s, intercept %s'%(lda.coef_,lda.intercept_))
print('Score: %.2f' % lda.score(X_test, y_test)) # 产生用于分类的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_LinearDiscriminantAnalysis
test_LinearDiscriminantAnalysis(X_train,X_test,y_train,y_test)

def plot_LDA(converted_X,y):
'''
绘制经过 LDA 转换后的数据
:param converted_X: 经过 LDA转换后的样本集
:param y: 样本集的标记
'''
fig=plt.figure()
ax=Axes3D(fig)
colors='rgb'
markers='o*s'
for target,color,marker in zip([0,1,2],colors,markers):
pos=(y==target).ravel()
X=converted_X[pos,:]
ax.scatter(X[:,0], X[:,1], X[:,2],color=color,marker=marker,label="Label %d"%target)
ax.legend(loc="best")
fig.suptitle("Iris After LDA")
plt.show() def run_plot_LDA():
'''
执行 plot_LDA 。其中数据集来自于 load_data() 函数
'''
X_train,X_test,y_train,y_test=load_data()
X=np.vstack((X_train,X_test))
Y=np.vstack((y_train.reshape(y_train.size,1),y_test.reshape(y_test.size,1)))
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X, Y)
converted_X=np.dot(X,np.transpose(lda.coef_))+lda.intercept_
plot_LDA(converted_X,Y) # 调用 run_plot_LDA
run_plot_LDA()

def test_LinearDiscriminantAnalysis_solver(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 solver 参数的影响
'''
X_train,X_test,y_train,y_test=data
solvers=['svd','lsqr','eigen']
for solver in solvers:
if(solver=='svd'):
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver)
else:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver,shrinkage=None)
lda.fit(X_train, y_train)
print('Score at solver=%s: %.2f' %(solver, lda.score(X_test, y_test))) # 调用 test_LinearDiscriminantAnalysis_solver
test_LinearDiscriminantAnalysis_solver(X_train,X_test,y_train,y_test)

def test_LinearDiscriminantAnalysis_shrinkage(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 shrinkage 参数的影响
'''
X_train,X_test,y_train,y_test=data
shrinkages=np.linspace(0.0,1.0,num=20)
scores=[]
for shrinkage in shrinkages:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver='lsqr',shrinkage=shrinkage)
lda.fit(X_train, y_train)
scores.append(lda.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(shrinkages,scores)
ax.set_xlabel(r"shrinkage")
ax.set_ylabel(r"score")
ax.set_ylim(0,1.05)
ax.set_title("LinearDiscriminantAnalysis")
plt.show()
# 调用 test_LinearDiscr
test_LinearDiscriminantAnalysis_shrinkage(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis的更多相关文章

  1. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  3. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  4. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  5. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  6. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  7. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  8. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  9. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

随机推荐

  1. 电路 - 基尔霍夫定律(KLL);节点流入电流等于流出电流。

    下面是我在学习STM32 中ADC测量电压,时候接触掉ADC的测量范围在0~3.3V 之间,不满足于实际使用,用于电路知识设计电压放大电路.(图片来自野火) 上面个的电路,可以等效出一个电路公式:(V ...

  2. FPGA Asynchronous FIFO设计思路(2)

    FPGA Asynchronous FIFO设计思路(2) 首先讨论格雷码的编码方式: 先看4bit的格雷码,当MSB为0时,正向计数,当MSB为1时,即指针已经走过一遍了,最高位翻转,此时的格雷码是 ...

  3. 如何在本地同时管理github仓库和codingnet仓库?

    本文的前提条件是你在电脑上接入了github或者gitlab的仓库,现在要接入codingnet的仓库. 电脑上已经有了 github 的 ssh key,怎么继续接入codingnet 的git仓库 ...

  4. 利用grep参数查看某关键词前后几行内容

    查看文件中含有“哈哈哈”关键字所在行后5行内容 cat xxxxxx | grep -A 5 哈哈哈 查看文件中含有“哈哈哈”关键字所在行前5行内容 cat xxxxxx | grep -B 5 哈哈 ...

  5. java 乱码问题集

    场景1:刚复制来的java类乱码,反复修改无果 解:将java类用NotePat++打开,可正常显示,复制过来即可.

  6. 去freessl.org申请免费ssl服务器证书

    去freessl.org申请免费ssl服务器证书 来源: 本文链接 来自osnosn的博客 写于: 2019-03-30. 想搞个自签名证书,可以参考这篇: 用openssl为WEB服务器生成证书(自 ...

  7. [蓝桥杯]PREV-13.历届试题_网络寻路

    题目描述: 代码如下: #include <stdio.h> #include <stdlib.h> #include <string.h> #define LEN ...

  8. css定义好看的垂直滚动条

    滚动条的css样式主要有三部分组成: 1.::-webkit-scrollbar   定义了滚动条整体的样式:    2.::-webkit-scrollbar-thumb  滑块部分:     3. ...

  9. CefSharp 与 js 相互调用

    https://blog.csdn.net/gong_hui2000/article/details/48155547

  10. sqlserver 游标使用

    文章来源:https://blog.csdn.net/farmwang/article/details/78661326 --声明一个游标 DECLARE MyCursor CURSOR FOR SE ...