引入:绝对值

distance\(:|a-b|\)
properties\(:(1)|x| \geq 0\),for all \(x \in R\),and \("=” \Leftrightarrow x=0\)
\((2):|a-b|=|b-a|(|x|=|-x|)\)
\((3):|x+y| \leq |x|+|y|\),for all \(x,y \in R\)
(\(|a-c| \leq |a-b|+|b-c|\))

度量空间

Distance function/metric space
Let \(X\) be a set.
\(\underline{Def:}\)A function \(X \times X \stackrel{d}{\longrightarrow}\mathbb{R}\)is called a distance function on \(X\)
1.\(\forall x,y\in X\),\(d(x,y)\geq 0\) and \("=” \Leftrightarrow x=y\)
2.\(\forall x,y\in X\),\(d(x,y)=d(y,x)\)
3.\(\forall x,y,z \in X\),\(d(x,z)\leq d(x,y)+d(y,z)\)

Example:

\(\mathfrak{A}:\)
1.\(x=(x_1,x_2,\dots,x_m),y=(y_1,y_2,\dots,y_m)\in \mathbb{R}^n\)
\(d_2(x,y):=\sqrt{|x_1-y_1|^2+\cdots+|x_m-y_m|^2}=|x-y|\)
\(d_2\) is a metric on \(\mathbb{R}^n\)(Cauchy inequality)
2.\(d_1(x,y):=|x_1-y_1|+|x_2-y_2|+\cdots+|x_m-y_m|\)
3.\(d_{\infty}(x,y)=max\{|x_1-y_1|,\dots,|x_m-y_m|\}\)
\(\mathfrak{B}:\)
X:a set.For \(x,y \in X\),let \[d(x,y):=\left\{
\begin{aligned}
1&if&x\leq y
\\
0&if&x =y
\end{aligned}
\right.
\]
\(d(x,y)\Rightarrow\)the discrete metric

开集,闭集

we may generalize the definitions about limits and convergence to metric space
\(\underline{Def}\) Let \((X,d)\) be a metric space,\(a_n(n \in \mathbb{N})\)be a seq in \(\mathrm{X}\).and \(\mathcal{L}\)in X
\(a_n(n \in \mathbb{N})\)converges to \(\mathcal{L}\)
(1)For \(r \geq 0\)and \(x_0 \in X\),we let \(B_r(x_0)=\{x \in X|d(x,x_0)\leq r\}\)(open ball)
(2).S is an open set(of\((X,d)\)),if \(\forall x \in S\),\(\exists r >0\)
(\(B_r(x_0)\subset S\))open ball \(\Rightarrow\)open set
EX:
\((X,d):\)metric space.\(x_0 \in X,r \geq 0\)
Show that:(1)\(B_r(x_0)\)is open
(2)\(\{x \in X|d(x,x_0)> r\}\)is open
warning:A subset \(S\) of a topological space \((X, \mathcal{T})\) is said to be clopen if it is both open and closed in \((X, \mathcal{T})\)
Example. \(\quad\) Let \(X=\{a, b, c, d, e, f\}\) and
\[
\tau_{1}=\{X, \emptyset,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e, f\}\}
\]
We can see:

(i) the set \(\{a\}\) is both open and closed;

(ii) the set \(\{b, c\}\) is neither open nor closed;

(iii) the set \(\{c, d\}\) is open but not closed;

(iv) the set \(\{a, b, e, f\}\) is closed but not open.
In a discrete space every set is both open and closed, while in an indiscrete space\((X, \tau),\) all subsets of \(X\) except \(X\) and \(\emptyset\) are neither open nor closed.

Metric space,open set的更多相关文章

  1. [实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间

    1 回忆:    $$\bex    \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbo ...

  2. 度量空间(metric space)

    一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...

  3. 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

    目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...

  4. 关于METRIC SPACE中的一些概念对比(sequence and net)

    由于LaTeX 和其他的编辑软件都不太好用,所以采用手写笔记的方式. ——一个想学代几的大二小萌新

  5. Hilbert space

    Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...

  6. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  7. Metric Learning度量学习:**矩阵学习和图学习

    DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553 一篇metric learning(DML)的综述文章,对DML的意义.方 ...

  8. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  9. topological space

    \(\underline{Def:}\)A topology space \(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\un ...

随机推荐

  1. part6 城市页面搜索内容开发

    keyword 监听时间做一个节流处理 keyword为input输入的内容 //当逻辑卡壳的时候 可以试着重启服务器,浏览器 当搜索内容出现很多的时候 内容无法滚动 可以引入 better-scro ...

  2. Bootstrap-模态框 modal.js

    参考网址:http://v3.bootcss.com/(能抄不写) 1.大模态框 图片效果图: 代码:(button的属性data-target对应的是具体模态框的class) <!-- Lar ...

  3. jquery关于Select元素的操作

    jQuery获取Select元素,并选择的Text和Value: $("#select_id").change(function(){//code...});           ...

  4. POJ 1547:Clay Bully

    Clay Bully Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8349   Accepted: 4711 Descri ...

  5. jenkins job 杀进程不成功解决办法

    jenkins_job #!/bin/bash set -ex #打印执行过程 BUILD_ID=DONTKILLME #防止自杀 ssh dataexa@192.168.1.65 > /dev ...

  6. 吴裕雄--天生自然 JAVASCRIPT开发学习: 表单验证

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. POJ 1860:Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22648   Accepted: 818 ...

  8. 微信公众号关联小程序AppID是什么

    微信公众平台appid在哪 1.appid和appsecret是微信公众平台服务号才有的,如果自己家的公众平台不是服务号,需要升级为服务号. 2.登录服务号,登录“服务”条目,“服务中心”如图. 3. ...

  9. target到底是什么?

    xmake是一个基于Lua的轻量级现代化c/c++的项目构建工具,主要特点是:语法简单易上手,提供更加可读的项目维护,实现跨平台行为一致的构建体验. 本文主要详细讲解下,如果在一个项目中维护和生成多个 ...

  10. POJ-1015 Jury Compromise(dp|01背包)

    题目: In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting ...