Metric space,open set
引入:绝对值
distance\(:|a-b|\)
properties\(:(1)|x| \geq 0\),for all \(x \in R\),and \("=” \Leftrightarrow x=0\)
\((2):|a-b|=|b-a|(|x|=|-x|)\)
\((3):|x+y| \leq |x|+|y|\),for all \(x,y \in R\)
(\(|a-c| \leq |a-b|+|b-c|\))
度量空间
Distance function/metric space
Let \(X\) be a set.
\(\underline{Def:}\)A function \(X \times X \stackrel{d}{\longrightarrow}\mathbb{R}\)is called a distance function on \(X\)
1.\(\forall x,y\in X\),\(d(x,y)\geq 0\) and \("=” \Leftrightarrow x=y\)
2.\(\forall x,y\in X\),\(d(x,y)=d(y,x)\)
3.\(\forall x,y,z \in X\),\(d(x,z)\leq d(x,y)+d(y,z)\)
Example:
\(\mathfrak{A}:\)
1.\(x=(x_1,x_2,\dots,x_m),y=(y_1,y_2,\dots,y_m)\in \mathbb{R}^n\)
\(d_2(x,y):=\sqrt{|x_1-y_1|^2+\cdots+|x_m-y_m|^2}=|x-y|\)
\(d_2\) is a metric on \(\mathbb{R}^n\)(Cauchy inequality)
2.\(d_1(x,y):=|x_1-y_1|+|x_2-y_2|+\cdots+|x_m-y_m|\)
3.\(d_{\infty}(x,y)=max\{|x_1-y_1|,\dots,|x_m-y_m|\}\)
\(\mathfrak{B}:\)
X:a set.For \(x,y \in X\),let \[d(x,y):=\left\{
\begin{aligned}
1&if&x\leq y
\\
0&if&x =y
\end{aligned}
\right.
\]
\(d(x,y)\Rightarrow\)the discrete metric
开集,闭集
we may generalize the definitions about limits and convergence to metric space
\(\underline{Def}\) Let \((X,d)\) be a metric space,\(a_n(n \in \mathbb{N})\)be a seq in \(\mathrm{X}\).and \(\mathcal{L}\)in X
\(a_n(n \in \mathbb{N})\)converges to \(\mathcal{L}\)
(1)For \(r \geq 0\)and \(x_0 \in X\),we let \(B_r(x_0)=\{x \in X|d(x,x_0)\leq r\}\)(open ball)
(2).S is an open set(of\((X,d)\)),if \(\forall x \in S\),\(\exists r >0\)
(\(B_r(x_0)\subset S\))open ball \(\Rightarrow\)open set
EX:
\((X,d):\)metric space.\(x_0 \in X,r \geq 0\)
Show that:(1)\(B_r(x_0)\)is open
(2)\(\{x \in X|d(x,x_0)> r\}\)is open
warning:A subset \(S\) of a topological space \((X, \mathcal{T})\) is said to be clopen if it is both open and closed in \((X, \mathcal{T})\)
Example. \(\quad\) Let \(X=\{a, b, c, d, e, f\}\) and
\[
\tau_{1}=\{X, \emptyset,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e, f\}\}
\]
We can see:
(i) the set \(\{a\}\) is both open and closed;
(ii) the set \(\{b, c\}\) is neither open nor closed;
(iii) the set \(\{c, d\}\) is open but not closed;
(iv) the set \(\{a, b, e, f\}\) is closed but not open.
In a discrete space every set is both open and closed, while in an indiscrete space\((X, \tau),\) all subsets of \(X\) except \(X\) and \(\emptyset\) are neither open nor closed.
Metric space,open set的更多相关文章
- [实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间
1 回忆: $$\bex \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbo ...
- 度量空间(metric space)
一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...
- 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...
- 关于METRIC SPACE中的一些概念对比(sequence and net)
由于LaTeX 和其他的编辑软件都不太好用,所以采用手写笔记的方式. ——一个想学代几的大二小萌新
- Hilbert space
Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- Metric Learning度量学习:**矩阵学习和图学习
DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553 一篇metric learning(DML)的综述文章,对DML的意义.方 ...
- 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...
- topological space
\(\underline{Def:}\)A topology space \(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\un ...
随机推荐
- HashMap源码阅读笔记
HashMap源码阅读笔记 本文在此博客的内容上进行了部分修改,旨在加深笔者对HashMap的理解,暂不讨论红黑树相关逻辑 概述 HashMap作为经常使用到的类,大多时候都是只知道大概原理,比如 ...
- 51nod 1267:4个数和为0 哈希
1267 4个数和为0 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 给出N个整数,你来判断一下是否能够选出4个数,他们的和为0,可以则输出&qu ...
- Windbg 实践之结合条件断点
Case 1 1.bu USER32!PostMessageW "r $t0=@$t0+1;.printf\"PostMessageW Call Count:%d\",@ ...
- 干货 | 京东云原生容器—SpringCloud实践(一)
"云原生"成为近年热词并不是一种偶然,它不是一个软件,也不是一种框架,而是一堆理念集合,以及围绕这些理念所产生的一些最佳实践的工具.云原生天然就是作用于服务架构的,可以视作一个服务 ...
- Paper Review: Epigenetic Landscape, Cell Differentiation 02
I'll share another review paper about Epigenetic Landscape, it comes from Nature Review, published i ...
- 一线大厂的分布式唯一ID生成方案是什么样的?
本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...
- PHP时间戳常用转换
//设置中国时区 date_default_timezone_set('PRC'); //今天的时间搓 $today_start = strtotime(date('Y-m-d',time()).' ...
- android设备内部添加apn信息
由于工作原因今天需要给多台android设备中写入某张sim卡的apn相关信息,虽然可以通过sqlite命令写sql语句来写入到设备中,但设备一多起来就太低效了,所以在学习的过程中摸索着写了一个将ap ...
- java的io字符流关闭和刷新.flush();
因为内置缓冲区的原因,如果不关闭输出流,无法写出字符到文件中. 但是关闭的流对象,是无法继续写出数据 的.如果我们既想写出数据,又想继续使用流,就需要 flush 方法了. flush :刷新缓冲区, ...
- ZJNU 1069 - 表达式的转换——中级
栈运用的模板题,对于符号进行出入栈操作,每次与栈顶的符号进行优先级判断,得出第一行后缀表达式. 在其后的化简计算中,每次用一个特殊符号(代码中使用了'?')代替原来的计算结果引用,并开一个数组表示每次 ...