Exponial

题目

http://exam.upc.edu.cn/problem.php?cid=1512&pid=4

欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b%phi(p)+phi(p))%p

这题做的难受....看到题目我就猜到肯定用到欧拉降幂,然后就毫无目的地找规律。然后发现不同地取欧拉函数会变成0,然后内心毫无波动.....可能不怎么会递归

思路:当n>=6时,欧拉降幂定理一定适用,因为f(5)>1e9,也就是一定有欧拉降幂定理的b>phi(p)这个条件,所以f(n)%p=nf(n-1)%p=n(f(n-1)%phi(p)+phi(p))%p;再递归地求f(n-1)%phi(p)

当n<=5时,f(n)%p=n^f(n-1)%p,因为不一定有f(n-1)>phi(p)成立,所以不能用欧拉降幂定理求,直接手动求出f(n)%p即可;

从1e9递归到5很慢,但当p=1时,可以直接返回f(n)%p=0而不用递归到下一层;

AC代码:

#include <cstdio>
typedef long long ll; ll phi(ll x){
ll res=x;
for(ll i=2; i*i<=x; ++i){
if(x%i==0){
res=res-res/i;
while(x%i==0)x/=i;
}
}
if(x>1)
res=res-res/x;
return res;
}
ll qpow(ll a,ll n,ll mod){
ll res=1;
while(n){
if(n&1){
res*=a;
res%=mod;
}
n>>=1;
a=(a*a)%mod;
}
return res;
}
ll solve(ll n,ll m)
{
if(m==1) return 0;
if(n==1) return 1;
else if(n==2) return 2%m;
else if(n==3) return 9%m;
else if(n==4) return qpow(4,9,m);
ll tem=phi(m);
return qpow(n,solve(n-1,tem)+tem,m);
}
int main()
{
//printf("%lld\n",phi(1000000));
ll n,m;
while(scanf("%lld%lld",&n,&m)!=EOF){
printf("%lld\n",solve(n,m));
}
return 0;
}

好久没写博客.....自己太菜要努力鸭

[数学][欧拉降幂定理]Exponial的更多相关文章

  1. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  2. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  3. 欧拉降幂,基本计算定理——cf615D

    用基本算数定理求约数和的思想来计算, 首先用pi,ci来表示第i个质数,指数为i,然后对于每个pi,pi^2...都有指数为mul{(c_1+1)(c_2+1)(c_i-1+1)(c_i+1+1).. ...

  4. 数学--数论--欧拉降幂--P5091 欧拉定理

    题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...

  5. TOJ 3151: H1N1's Problem(欧拉降幂)

    传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3151 时间限制(普通/Java): ...

  6. HDU4704(SummerTrainingDay04-A 欧拉降幂公式)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  7. 2019计蒜之道初赛3 D. 阿里巴巴协助征战SARS(困难)(大数取余+欧拉降幂)

    阿里巴巴协助征战SARS(困难) 33.29% 1000ms 262144K   目前,SARS 病毒的研究在世界范围内进行,经科学家研究发现,该病毒及其变种的 DNA 的一条单链中,胞嘧啶.腺嘧啶均 ...

  8. HDU - 4704 sum 大数取余+欧拉降幂

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  9. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

随机推荐

  1. jQuery元素的左右移动

    1.下载jQuery,并导入:https://blog.csdn.net/weixin_44718300/article/details/88746796 2.代码实现: <!DOCTYPE h ...

  2. 全面掌握Nginx配置+快速搭建高可用架构 一 Centos7 安装Nginx

    Nginx官网 http://nginx.org/en/linux_packages.html#stable 配置yum 在etc的yum.repos.d目录下新增nginx.repo 将内容copy ...

  3. 使用软件模拟spi 时序时注意点

    软件模拟 spi 时序有以下几个点需要注意: cs 使能后到第一个 sck 边沿需要延时. 最后一个sck 边沿到下一个 cs 需要延时. sck 的高电平和低电平本身需要维持时间. mosi 需要先 ...

  4. CountDownLatch、CyclicBarrier、Semaphore的使用

    CountDownLatch(计数器) 主线程等待另外三个线程执行完成后再执行 public static void main(String[] args) { //定义一个CountDownLatc ...

  5. SQL SERVER 2012 OBJECT_ID

    原来一个存储过程执行正常,升级sqlserver后提示临时表已存在,后查找资料 sql server 2012  OBJECT_ID('临时表')返回的数值是负数,在 2008r2及前是正数,所以导致 ...

  6. HTML-基础标记

    HTML, 一种超文本标记语言,顾名思义,要比文本的样式多,而且是由标记组成,还是一门语言. 标记写法 <标记名> <a></a>双标记 超链接 <br /& ...

  7. ES6 之 第七种数据类型Symbol

    概述 为了减少对象的属性名冲突,ES6引入新的原始数据类型Symbol,JS的第七种数据类型. Symbol 能够保证每个属性的名字都是独一无二,这样就能从根本上防止属性名冲突. Symbol 值能够 ...

  8. vue安装插件指定版本

    安装插件指定版本 npm install 插件名称@2.9.6 --save 查看需要安装插件的版本记录 npm view 插件名称 versions --json

  9. [Java-基础]反射_Class对象_动态操作

    动态性 动态语言 在程序运行时,可以改变程序结构或变量类型,典型的语言: Python,ruby,javascript 如: function test(){ var s = "var a= ...

  10. h5-圆角的使用-案例安卓机器人

    1.圆角的使用 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...