[数学][欧拉降幂定理]Exponial
Exponial
题目
http://exam.upc.edu.cn/problem.php?cid=1512&pid=4
欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b%phi(p)+phi(p))%p
这题做的难受....看到题目我就猜到肯定用到欧拉降幂,然后就毫无目的地找规律。然后发现不同地取欧拉函数会变成0,然后内心毫无波动.....可能不怎么会递归
思路:当n>=6时,欧拉降幂定理一定适用,因为f(5)>1e9,也就是一定有欧拉降幂定理的b>phi(p)这个条件,所以f(n)%p=nf(n-1)%p=n(f(n-1)%phi(p)+phi(p))%p;再递归地求f(n-1)%phi(p)
当n<=5时,f(n)%p=n^f(n-1)%p,因为不一定有f(n-1)>phi(p)成立,所以不能用欧拉降幂定理求,直接手动求出f(n)%p即可;
从1e9递归到5很慢,但当p=1时,可以直接返回f(n)%p=0而不用递归到下一层;
AC代码:
#include <cstdio>
typedef long long ll;
ll phi(ll x){
ll res=x;
for(ll i=2; i*i<=x; ++i){
if(x%i==0){
res=res-res/i;
while(x%i==0)x/=i;
}
}
if(x>1)
res=res-res/x;
return res;
}
ll qpow(ll a,ll n,ll mod){
ll res=1;
while(n){
if(n&1){
res*=a;
res%=mod;
}
n>>=1;
a=(a*a)%mod;
}
return res;
}
ll solve(ll n,ll m)
{
if(m==1) return 0;
if(n==1) return 1;
else if(n==2) return 2%m;
else if(n==3) return 9%m;
else if(n==4) return qpow(4,9,m);
ll tem=phi(m);
return qpow(n,solve(n-1,tem)+tem,m);
}
int main()
{
//printf("%lld\n",phi(1000000));
ll n,m;
while(scanf("%lld%lld",&n,&m)!=EOF){
printf("%lld\n",solve(n,m));
}
return 0;
}
好久没写博客.....自己太菜要努力鸭
[数学][欧拉降幂定理]Exponial的更多相关文章
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Codeforces Round #454 D. Power Tower (广义欧拉降幂)
D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...
- 欧拉降幂,基本计算定理——cf615D
用基本算数定理求约数和的思想来计算, 首先用pi,ci来表示第i个质数,指数为i,然后对于每个pi,pi^2...都有指数为mul{(c_1+1)(c_2+1)(c_i-1+1)(c_i+1+1).. ...
- 数学--数论--欧拉降幂--P5091 欧拉定理
题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...
- TOJ 3151: H1N1's Problem(欧拉降幂)
传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3151 时间限制(普通/Java): ...
- HDU4704(SummerTrainingDay04-A 欧拉降幂公式)
Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submi ...
- 2019计蒜之道初赛3 D. 阿里巴巴协助征战SARS(困难)(大数取余+欧拉降幂)
阿里巴巴协助征战SARS(困难) 33.29% 1000ms 262144K 目前,SARS 病毒的研究在世界范围内进行,经科学家研究发现,该病毒及其变种的 DNA 的一条单链中,胞嘧啶.腺嘧啶均 ...
- HDU - 4704 sum 大数取余+欧拉降幂
Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submi ...
- ACM-数论-广义欧拉降幂
https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...
随机推荐
- Java9,8,7中接口的内容
在Java 9+版本中,接口的内容可以有: 1:成员变量其实是常量格式:[public][static][final] 数据类型 常量名称 =数据值:注意: 常量必须进行赋值,而且一旦赋值不能改变 常 ...
- RectTransform详解
乾坤那个大挪移 ----------------------------------------------------------------- 我是分割线 ------------------ ...
- [GXYCTF2019]禁止套娃
0x00 知识点 无参数RCE eval($_GET['exp']); 参考链接: https://skysec.top/2019/03/29/PHP-Parametric-Function-RCE/ ...
- python py pyc pyw pyo pyd之间区别
来源: http://blog.csdn.net/chroming/article/details/52083387 1.py 脚本文件,是最基本的源码扩展名.windows下直接双击运行会调用pyt ...
- re模块3
#分组 () print(re.findall("(ad)/(vv)","adddad/vvdddddddddd")) print(re.findall(&qu ...
- centos rpm安装jdk1.8
1.官网下载jdk的rpm文件(http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html) ...
- 1-4 无监督学习(Unsupervised Learning)
无监督学习定义: [无监督学习]中没有任何的标签或者是有相同的标签或者就是没标签.所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么.别的都不知道,就是一个数据集.你能从数据中找到某种结构吗 ...
- 谈Web前端-html
什么是HTML? HTML 是用来描述网页的一种语言: HTML 值得是超文本标记语言:Hyper Text Markup Language HTML 不是一种编程语言,而是一种标 ...
- python对数组缺失值进行填充
1. 两个常用的函数 1.1 np.nonzero() np.nonzero()函数返回数组中不为False(0)的元素对应的索引 a = np.array([1,2,0,3,1,0]) print( ...
- 从编程实现角度学习Faster R-CNN(附极简实现)
https://www.jianshu.com/p/9da1f0756813 从编程实现角度学习Faster R-CNN(附极简实现) GoDeep 关注 2018.03.11 15:51* 字数 5 ...