思想比较简单,就是每个通过map来获取当前的数据块中的的topk个数据,然后将他们以相同的key值放到reduce中,最后通过reduce来对这n*k个数据排序并获得topk个数据。具体的就是建立一个k个大小的数组,一开始初始化为都是100(假定这里的100是最大的数),然后往里面插数据小的数据即可。

 
PS:有几个小细节以及当时写代码的时候出错的地方。
1 map和reduce都是在每个键值对来的时候会被调用。当时觉得应该把这k的数组放在哪,以及怎么初始化。如果放在map方法里面,那每次都会被初始化,岂不是白搞了。如果把这数组当作局部变量,那肯定是不行的,因为当作局部变量就无法实现存放k个数据了。只能存放当前的数据。后来查了资料发现,有个setup这个函数,就是用于mapper中的某些数据的初始化,这样就可以把数组作为mapper的属性,然后在setup中进行初始化了。
2 当我全部遍历完这个数据分片的数据后,并且已经获得了当前mapper中的topk了,我如何把数据传到reducer呢,最理想的就是在遍历完后才把数据发送过去,但是以前都是处理一个键值对就发送一个,然后查了下,发现有个cleanup函数,就是用于mapper或者reducer结束后用的,那么就可以通过这个函数来发送键值对了。
3 这是个逻辑上的问题,我这里的topk是选最小的几个,然后当时写的是,先将数组排序,然后从前往后查询,如果发现value<list[i]那么就将该数组中数据替换,但是这个有问题,例如有这样的
45
21
75
94
1
34
56
7
67
按照我一开始的逻辑是,
45,100,100
21,100,100显然这一步就错了,应该是21,45,100所以应该是从后往前的查询,每次查询能替换的最大的数据,而不是从前往后的查询替换最小的数据
 
具体代码:
Map
 
                 public void setup(Context context){
                                Configuration conf=context.getConfiguration();
                                 int k=Integer.parseInt(conf.get( "k" ));
                                 list =new int[k];
                                 for (int i=0;i<k;i++){
                                                 list [i]=100;
                                }
                }
                
                 public void cleanup(Context context) throws IOException, InterruptedException{
                                 for (int i=0;i< list. length ;i++){
                                                context.write( new IntWritable(0), new IntWritable( list[i]));
                                                System. out .println("                                 ");
                                                System. out .println("map is " + list[i]);
                                                System. out .println("                                 ");
                                }
                }
                
                 public void map(LongWritable ikey, Text ivalue, Context context)
                                                 throws IOException, InterruptedException {
                                Configuration conf=context.getConfiguration();
                                 int k=Integer.parseInt(conf.get( "k" ));
                                 int value=Integer.parseInt(ivalue.toString());
                                
                                Arrays. sort( list);
                                System. out .println("                                 ");
                                System. out .println("n is " + n);
                                System. out .println("                                 ");
 
                                                 for (int j=k-1;j>=0;j--){
                                                                 if (value<list [j]){
                                                                                 list [j]=value;
                                                                                 break ;
                                                                }
                                                }
                                
                                
                }
 
}
 
Reducer
 
                 public void setup(Context context){
                                Configuration conf=context.getConfiguration();
                                 int k=Integer.parseInt(conf.get( "k" ));
                                 list =new int[k];
                                 for (int i=0;i<k;i++){
                                                 list [i]=100;
                                }
                }
                
                 public void cleanup(Context context) throws IOException, InterruptedException{
                                Arrays. sort( list);
                                 for (int i=0;i< list. length ;i++){
                                                context.write( new IntWritable(i), new IntWritable( list[i]));
                                }
                }
                
                
                 public void reduce(IntWritable _key, Iterable<IntWritable> values, Context context)
                                                 throws IOException, InterruptedException {
                                 // process values
                                Configuration conf=context.getConfiguration();
                                 int k=Integer.parseInt(conf.get( "k" ));
                                 for (IntWritable val : values) {
                                                 /*
                                                System.out.println("                                 ");
                                                System.out.println("value is "+val.get());
                                                System.out.println("                                 ");
                                                */
                                                Arrays. sort( list);
 
                                                                 for (int j=k-1;j>=0;j--){
                                                                                 if (val.get()<list [j]){
                                                                                                 list [j]=val.get();
                                                                                                 break ;
                                                                                }
                                                                }
                                                                
                                                
                                }
                }

Mapreduce TopK的更多相关文章

  1. MapReduce TopK统计加排序

    Hadoop技术内幕中指出Top K算法有两步,一是统计词频,二是找出词频最高的前K个词.在网上找了很多MapReduce的Top K案例,这些案例都只有排序功能,所以自己写了个案例. 这个案例分两个 ...

  2. 使用MapReduce实现一些经典的案例

    在工作中,很多时候都是用hive或pig来自动化执行mr统计,但是我们不能忘记原始的mr.本文记录了一些通过mr来完成的经典的案例,有倒排索引.数据去重等,需要掌握. 一.使用mapreduce实现倒 ...

  3. MapReduceTopK TreeMap

    版权声明: https://blog.csdn.net/zhangxiango/article/details/33319281 MapReduce TopK统计加排序中介绍的TopK在mapredu ...

  4. MapReduce实现TopK的示例

    由于开始学习MapReduce编程已经有一段时间了,作为一个从编程中寻找自信和乐趣以及热爱编程的孩子来讲,手开始变得很“痒”了,很想小试一下身手.于是自己编写了TopK的代码.TopK的意思就是从原文 ...

  5. Hadoop学习笔记—12.MapReduce中的常见算法

    一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思 ...

  6. mapReduce编程之auto complete

    1 n-gram模型与auto complete n-gram模型是假设文本中一个词出现的概率只与它前面的N-1个词相关.auto complete的原理就是,根据用户输入的词,将后续出现概率较大的词 ...

  7. mapReduce编程之Recommender System

    1 协同过滤算法 协同过滤算法是现在推荐系统的一种常用算法.分为user-CF和item-CF. 本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小:另外,电 ...

  8. InAction-MR的topK

    本来只是想拿搜狗的数据练练手的,却无意踏足MR的topK问题.经过几番波折,虽然现在看起来很简单,但是摸爬滚打中也学到了不少 数据是搜狗实验室下的搜索日志,格式大概为: 00:00:00 298219 ...

  9. MapReduce 支持的部分数据挖掘算法

    MapReduce 支持的部分数据挖掘算法 MapReduce 能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立,彼此之间不会有牵制,待并行处理完这些子问题后,任务便被解 ...

随机推荐

  1. 观光公交noip<贪心>

    题目链接:https://www.oj.swust.edu.cn/problem/show/1190 思路: 每在一段路上使用一次加速器,就会对某些人或者说某些路段上的人产生影响,目的是使产生的影响最 ...

  2. mysql 字段的类型有哪些

    int型包括(tinyint, smallint, mediumint, int, bigint) tinyint是1个字节表达范围就是2的8次方(-128-128) 或者(0-255) 很多人不明白 ...

  3. tiny210 u-boot 网络ping不通主机解决方案

    站在巨人的肩膀上: http://blog.csdn.net/liukun321/article/details/7438880 http://www.arm9home.net/read.php?ti ...

  4. 在win7/8/10鼠标右键添加按下SHIFT键时弹出的“在此处打开命令窗口”

    Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\Drive\shell\cmd]@="@shell32.dll,-8506&q ...

  5. parseint和parsefloat总结number。隐形转换

    parseint:会认识一些字符+.-.空格,其他的就会截止譬如23hudhchauch结果为:23,对于boollen类型不能转换为1或是0. number:是对整体的转换.对true的转换为1. ...

  6. HDU 1054 Strategic Game 最小点覆盖

     最小点覆盖概念:选取最小的点数覆盖二分图中的所有边. 最小点覆盖 = 最大匹配数. 证明:首先假设我们求的最大匹配数为m,那么最小点覆盖必然 >= m,因为仅仅是这m条边就至少需要m个点.然后 ...

  7. poj 1654 Area(计算几何--叉积求多边形面积)

    一个简单的用叉积求任意多边形面积的题,并不难,但我却错了很多次,double的数据应该是要转化为long long,我转成了int...这里为了节省内存尽量不开数组,直接计算,我MLE了一发...,最 ...

  8. Java中域 实例域 静态域

    1.java中的域 所谓的域,翻译成英文就是field, 也就是我们常说的字段,或者说是属性. 比如类的字段(属性),局部的,全局的.所谓域,其实是“field”的翻译 然后实例域,就是 实例(&qu ...

  9. java 工作内存

    所谓线程的“工作内存”到底是个什么东西?有的人认为是线程的栈,其实这种理解是不正确的.看看JLS(java语言规范)对线程工作 内存的描述,线程的working memory只是cpu的寄存器和高速缓 ...

  10. iptables详解--转

    出处:http://yijiu.blog.51cto.com/433846/1356254 iptables详解 基本概念: 1.防火墙工作在主机边缘:对于进出本网络或者本主机的数据报文,根据事先设定 ...