线性代数之——A 的 LU 分解
1. A = LU
之前在消元的过程中,我们看到可以将矩阵 \(A\) 变成一个上三角矩阵 \(U\),\(U\) 的对角线上就是主元。下面我们将这个过程反过来,通一个下三角矩阵 \(L\) 我们可以从 \(U\) 得到 \(A\), \(L\) 中的元素也就是乘数 \(l_{ij}\)。
如果有一个 3*3 的矩阵,假设不需要进行行交换,那我们需要三个消元矩阵 \(E_{21}, E_{31}, E_{32}\) 来分别使矩阵 \(A\) 的 (2, 1)、(3, 1) 和 (3, 2) 位置为零,然后我们就有
乘数 \(l_{ij}\) 正好就是 \(L\) 中 \((i, j)\) 处的元素。因为当我们计算 \(U\) 的第三行的时候,实际上是用 \(A\) 的第三行减去 \(U\) 的前两行的一些倍数。
因此有
下面看一个特殊的例子
如果 \(A\) 的某一行以 0 开始,说明该位置不需要进行消元,也即 \(L\) 中对应位置的元素为 0。
如果 \(A\) 的某一列以 0 开始,该位置元素在消元过程始终不会改变,也即 \(U\) 中对应位置的元素为 0。
由于 \(L\) 的对角线上都是 1,而 \(U\) 的对角线上为主元,因此,这是不对称的。我们可以进一步将 \(U\) 进行分解,使得 \(U\) 的对角线上元素也都为 1。
这时候,\(A\) 的分解就变成了 \(A = LU = LDU\),其中 \(D\) 是一个对角矩阵, \(L\) 是一个下三角矩阵, \(U\) 是一个上三角矩阵。
当我们从左边的 \(A\) 得到 \(L\) 和 \(U\) 后,我们就对右边的 \(b\) 进行同样的消元过程得到 \(Lc = b\),然后再通过回带 \(Ux=c\) 求出方程组的解。
2. 消元过程的计算复杂度
假设我们有一个 \(n*n\) 的矩阵,首先我们要将第一列主元以下的元素都变成 \(0\)。这时候,每一个元素变成 \(0\) 我们都需要 \(n\) 次乘法和 \(n\) 次减法,总共有 \(n-1\) 个元素需要变成 \(0\),总的乘法次数为 \(n(n-1)\),近似为 \(n^2\)。然后,我们要依次将后面列的主元下面的元素变成 \(0\),需要的总的乘法次数为 \(n^2+(n-1)^2+\cdots + 2 + 1 \approx \frac{1}{3}n^3\)。
也就是说对左边的 \(A\) 消元要进行 \(\frac{1}{3}n^3\) 次的乘法操作和 \(\frac{1}{3}n^3\) 次的加法操作。
再来看右边对 \(b\) 进行消元,首先我们需要将 \(b_2, b_3 \cdots b_n\) 都减去 \(b_1\),需要 \(n-1\) 次操作,往后我们依次需要 \(n-2, n-3 \cdots 1\) 次操作。回带的时候,求解最后一个方程的时候,我们只需要进行 1 次操作,依次往上我们需要 \(2, 3 \cdots n\) 次操作。因此,求解的过程总共需要 \(n^2\) 次的乘法操作和 \(n^2\) 次的加法操作
3. 转置和置换矩阵
\(A\) 的转置矩阵称为 \(A^T\),其中 \(A^T\) 的列就是 \(A\) 的行,也即 \((A^T)_{ij} = A_{ji}\)。
\[(A+B)^T = A^T + B^T\]
\[(AB)^T = B^TA^T\]
假设 \(B\) 是一个向量 \(x\),那么对 \((Ax)^T = x^TA^T\) 的理解就是:\(Ax\) 是对 \(A\) 的列的线性组合,\(x^TA^T\) 则是对 \(A^T\) 的行的线性组合,\(A\) 的列和 \(A^T\) 的行是一样的,所以线性组合后是一样的结果。
如果 \(B\) 有多列的话,我们就很容易得到
同理,针对更多的矩阵,我们也有
\[(ABC)^T = C^TB^TA^T\]
\[(A^{-1})^T = (A^T)^{-1}\]
\[AA^{-1} = I \to (AA^{-1})^T = I \to (A^{-1})^TA^T = I \to (A^{-1})^T = (A^T)^{-1}\]
转置形式的内积和外积
对称矩阵的转置等于它本身,也就是 \(A^T = A\)。而且,一个对称矩阵的逆矩阵也是对称的。
\[(A^{-1})^T = (A^T)^{-1} = A^{-1}\]
对于一个任意的矩阵 \(R\),可以是矩形的,\(R^TR\) 和 \(RR^T\) 都是一个对称的方阵。
\[(R^TR)^T = R^T(R^T)^T = R^TR\]
当 \(A=A^T\) 时,如果没有行交换,那么有 \(A = LDU = LDL^T\),此时 \(U\) 变成了 \(L^T\)。
置换矩阵 \(P\) 每行每列都只有一个 1,而且 \(P^T\)、\(PP^T\) 和任意两个置换矩阵的乘积 \(P_1P_2\) 都还是置换矩阵。此外,所有的置换矩阵都有 \(P^T=P^{-1}\)。
在 \(n\) 阶的情况下,置换矩阵的总的个数为 \(n!\)。例如 2 阶置换矩阵只有 2 个,3 阶置换矩阵有 6 个。
如果在需要行交换的情况下,我们可以先引入一个置换矩阵 \(P\) 使矩阵 \(A\) 的行有正确的顺序,然后再进行消元,这样的话我们就有
\[PA=LU\]
也可以进行消元,然后再用一个矩阵 \(P_1\) 来让主元有一个正确的顺序,这样的话我们就有
\[A=L_1P_1U_1\]
如果 \(A\) 是可逆的,置换矩阵 \(P\) 将会使它的行有一个正确的顺序然后分解成 \(PA=LU\) 的形式。
获取更多精彩,请关注「seniusen」!
线性代数之——A 的 LU 分解的更多相关文章
- 线性代数笔记10——矩阵的LU分解
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...
- matlab 求解线性方程组之LU分解
线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- 矩阵LU分解分块算法实现
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...
- LU分解,Javascript代码
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- LU分解(2)
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...
- LU分解(1)
1/6 LU 分解 LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...
- MATLAB矩阵的LU分解及在解线性方程组中的应用
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...
随机推荐
- Hibernate连接各种数据库的配置
转自CSDN shl7765856的专栏:http://blog.csdn.net/shl7765856/article/details/7411987 目录: 1.MySql连接配置 2.Sql S ...
- ZXing.net 生成和解析二维码
nuget引用zxing.net包 public partial class Form1 : Form { public Form1() { InitializeComponent(); } priv ...
- JsonCpp在vs中使用
Jsoncpp是c++生成和解析Json数据的跨平台开源库.下面简介如何在vs中使用. 1.官网下载.https://sourceforge.net/projects/jsoncpp/解压文件得到js ...
- 纯js轮播图练习-1
偶尔练习,看视频自己学着做个简单的纯JS轮播. 简单的纯js轮播图练习-1. 样子就是上面图片那样,先不管好不好看,主要是学会运用和理解轮播的原理 掌握核心的理论知识和技术的操作,其他的都可以在这个基 ...
- 初学者:__init__.py文件的作用
__init__.py 文件的作用及意义 __init__.py文件是一个包必须的文件,即使它是空的,但也是必须的,如果没有这个文件,python将不会把该文件夹当做一个package,而仅仅是一个d ...
- mysql 库和表占用空间查询
1. 查看该数据库实例下所有库大小,得到的结果是以MB为单位 as sum from information_schema.tables; 2.查看该实例下各个库大小 as total_mb, as ...
- 树莓派3B+学习笔记:2、更改显示分辨率
1.打开终端,输入 sudo raspi-config 选择第7行: 2.选择第5行: 3.选择一个自己习惯的分辨率(我选择1024X768),确定后重启,VNC会自动连接: 4.更改分辨率完成,方便 ...
- 反射之三种class对象的获取方法
package www.bit.tech; public class Fanshe1 { } package www.bit.tech; import www.bit.tech.Fanshe1; cl ...
- Applied Cloud Deep Semantic Recognition: Advanced Anomaly Detection(应用云深层语义识别:高级异态检测)
亚马逊链接 引言 (by Mehdi Roopaei & Paul Rad) 异态检测与情境感知 在数据分析领域,异态检测讲的是在一个数据集中,发现到其中不符合预期模式的物体,动作,行为或事件 ...
- R语言爬虫:CSS方法与XPath方法对比(代码实现)
CSS选择器和XPath方法都是用来定位DOM树的标签,只不过两者的定位表示形式上存在一些差别: CSS 方法提取节点 library("rvest") single_table_ ...