题目描述

对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程。在可以选择的课程中,有2n节课程安排在n个时间段上。在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室ci上课,而另一节课程在教室di进行。在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的n节安排好的课程。如果学生想更换第i节课程的教室,则需要提出申请。若申请通过,学生就可以在第i个时间段去教室di上课,否则仍然在教室ci上课。由于更换教室的需求太多,申请不一定能获得通过。通过计算,牛牛发现申请更换第i节课程的教室时,申请被通过的概率是一个已知的实数ki,并且对于不同课程的申请,被通过的概率是互相独立的。学校规定,所有的申请只能在学期开始前一次性提交,并且每个人只能选择至多m节课程进行申请。这意味着牛牛必须一次性决定是否申请更换每节课的教室,而不能根据某些课程的申请结果来决定其他课程是否申请;牛牛可以申请自己最希望更换教室的m门课程,也可以不用完这m个申请的机会,甚至可以一门课程都不申请。因为不同的课程可能会被安排在不同的教室进行,所以牛牛需要利用课间时间从一间教室赶到另一间教室。牛牛所在的大学有v个教室,有e条道路。每条道路连接两间教室,并且是可以双向通行的。由于道路的长度和拥堵程度不同,通过不同的道路耗费的体力可能会有所不同。当第i(1≤i≤n-1)节课结束后,牛牛就会从这节课的教室出发,选择一条耗费体力最少的路径前往下一节课的教室。现在牛牛想知道,申请哪几门课程可以使他因在教室间移动耗费的体力值的总和的期望值最小,请你帮他求出这个最小值。

输入

第一行四个整数n,m,v,e。n表示这个学期内的时间段的数量;m表示牛牛最多可以申请更换多少节课程的教室;
v表示牛牛学校里教室的数量;e表示牛牛的学校里道路的数量。
第二行n个正整数,第i(1≤i≤n)个正整数表示c,,即第i个时间段牛牛被安排上课的教室;保证1≤ci≤v。
第三行n个正整数,第i(1≤i≤n)个正整数表示di,即第i个时间段另一间上同样课程的教室;保证1≤di≤v。
第四行n个实数,第i(1≤i≤n)个实数表示ki,即牛牛申请在第i个时间段更换教室获得通过的概率。保证0≤ki≤1。
接下来e行,每行三个正整数aj,bj,wj,表示有一条双向道路连接教室aj,bj,通过这条道路需要耗费的体力值是Wj;
保证1≤aj,bj≤v,1≤wj≤100。
保证1≤n≤2000,0≤m≤2000,1≤v≤300,0≤e≤90000。
保证通过学校里的道路,从任何一间教室出发,都能到达其他所有的教室。
保证输入的实数最多包含3位小数。

输出

输出一行,包含一个实数,四舎五入精确到小数点后恰好2位,表示答案。你的
输出必须和标准输出完全一样才算正确。
测试数据保证四舎五入后的答案和准确答案的差的绝对值不大于4*10^-3。(如果你不知道什么是浮点误差,这段话
可以理解为:对于大多数的算法,你可以正常地使用浮点数类型而不用对它进行特殊的处理)

样例输入

3 2 3 3
2 1 2
1 2 1
0.8 0.2 0.5
1 2 5
1 3 3
2 3 1

样例输出

2.80


题解

不是很难想的floyd+期望dp

f[i][j]表示前i门课程用j次机会,且第i门课程不申请换教室的最小期望,

g[i][j]表示前i门课程用j次机会,且第i门课程申请换教室的最小期望。

先用floyd求出任意两点的距离,

然后就是推来推去,不难推。

但最坑的就是:

这尼玛有重边。。。尼玛有重边。。。玛有重边。。。有重边。。。重边。。。边。。。

(题目也没说没有重边呀。。。)

注意处理。

还有memset不能用于double数组,不然会炸得很惨。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int c[2001] , d[2001] , map[301][301];
double p[2001] , f[2001][2001] , g[2001][2001];
int main()
{
int n , m , v , e , i , j , k , x , y , z;
double ans = 1000000000;
scanf("%d%d%d%d" , &n , &m , &v , &e);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &c[i]);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &d[i]);
for(i = 1 ; i <= n ; i ++ )
scanf("%lf" , &p[i]);
for(i = 1 ; i <= v ; i ++ )
{
for(j = 1 ; j <= v ; j ++ )
map[i][j] = 1000000000;
map[i][i] = 0;
}
for(i = 1 ; i <= e ; i ++ )
{
scanf("%d%d%d" , &x , &y , &z);
map[x][y] = map[y][x] = min(map[x][y] , z);
}
for(k = 1 ; k <= v ; k ++ )
for(i = 1 ; i <= v ; i ++ )
for(j = 1 ; j <= v ; j ++ )
if(map[i][j] > map[i][k] + map[k][j])
map[i][j] = map[i][k] + map[k][j];
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j <= m ; j ++ )
f[i][j] = g[i][j] = 1000000000;
f[1][0] = g[1][1] = 0;
for(i = 2 ; i <= n ; i ++ )
{
f[i][0] = f[i - 1][0] + map[c[i - 1]][c[i]];
for(j = 1 ; j <= m ; j ++ )
{
f[i][j] = min(f[i - 1][j] + map[c[i - 1]][c[i]] ,
g[i - 1][j] + map[c[i - 1]][c[i]] * (1 - p[i - 1])
+ map[d[i - 1]][c[i]] * p[i - 1]);
g[i][j] = min(f[i - 1][j - 1] + map[c[i - 1]][c[i]] * (1 - p[i])
+ map[c[i - 1]][d[i]] * p[i] ,
g[i - 1][j - 1] + map[c[i - 1]][c[i]] * (1 - p[i - 1]) * (1 - p[i])
+ map[d[i - 1]][c[i]] * p[i - 1] * (1 - p[i])
+ map[c[i - 1]][d[i]] * (1 - p[i - 1]) * p[i]
+ map[d[i - 1]][d[i]] * p[i - 1] * p[i]);
}
}
for(i = 0 ; i <= m ; i ++ )
ans = min(ans , min(f[n][i] , g[n][i]));
printf("%.2lf\n" , ans);
return 0;
}

【bzoj4720】[NOIP2016]换教室 期望dp的更多相关文章

  1. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  2. 【bzoj4720】[Noip2016]换教室 期望dp+最短路

    Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的 ...

  3. JZYZOJ1457 [NOIP2016]换教室 期望dp 动态规划 floyd算法 最短路

    http://172.20.6.3/Problem_Show.asp?id=1457 我不知道为什么我倒着推期望只有80分,所以我妥协了,我对着题解写了个正的,我有罪. #include<cst ...

  4. 洛谷1850(NOIp2016) 换教室——期望dp

    题目:https://www.luogu.org/problemnew/show/P1850 状态里记录的是”上一回有没有申请“,而不是”上一回申请成功否“,不然“申请 j 次”就没法转移了. dou ...

  5. [NOIP2016]换教室 期望dp

    先弗洛伊德,然后把状态拆分遗传 #include<iostream> #include<cstdio> #include<cstring> #include< ...

  6. 洛谷P1850 [noip2016]换教室——期望DP

    题目:https://www.luogu.org/problemnew/show/P1850 注释掉了一堆愚蠢,自己还是太嫩了... 首先要注意选或不选是取 min 而不是 /2 ,因为这里的选或不选 ...

  7. 换教室(期望+DP)

    换教室(期望+DP) \(dp(i,j,1/0)\)表示第\(i\)节课,申请了\(j\)次调换,这节课\(1/0\)调换. 换教室 转移的时候考虑: 上次没申请 这次也没申请 加上\(dis(fr[ ...

  8. 【BZOJ4720】【NOIP2016】换教室 [期望DP]

    换教室 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行四个整数n,m,v ...

  9. 2018.08.30 bzoj4720: [Noip2016]换教室(期望dp)

    传送门 一道无脑的期望dp. 用f[i][j][0/1]表示前i堂课提出了j次申请且第i堂课没有(有)提出申请. 这样就可以状态转移了. 然而这题状态转移方程有点长... (主要是情况多... 代码: ...

随机推荐

  1. 杭州优步uber司机第二组奖励政策

    -8月9日更新- 优步杭州第二组: 定义为激活时间在2015/6/8之后2015/8/3之前的车主(以优步后台数据显示为准) 滴滴快车单单2.5倍,注册地址:http://www.udache.com ...

  2. IOI 2017 Practice Contest mountains

    Mountains 题面 题意: 选最多的点使得两两看不见. 分析: 分治,solve(l,r)为区间[l,r]的答案.那么如果不选最高点,分治两边即可,选了最高点,那么在最高点看不见的区间里分治. ...

  3. (转)Ruby On Rails 推荐 Gem 列表

    作者:尘缘,QQ:130775,来源:http://www.4wei.cn/archives/1002157 PHP的包管理Composer还在刚刚兴起的阶段,Ruby社区已经有很多成熟的Gem了,R ...

  4. (译)学习如何构建自动化、跨浏览器的JavaScript单元测试

    作者:Philip Walton 译者:Yeaseon 原文链接:点此查看 译文仅供个人学习,不用于任何形式商业目的,转载请注明原作者.文章来源.翻译作者及链接,版权归原文作者所有. ___ 我们都知 ...

  5. linux初学体会

    第一篇随笔,其实是为了写作业,可是老师的要求是对的,其实自己在配环境和做作业的时候也会把遇到的问题的解决方法记录下来,以便以后查找方便.这次借此将那些内容放在这里,也跟大家一起分享下. 上周六算是第二 ...

  6. Request对象及常用方法

    Object getAttribute(String name) 获得name的属性,若不存在,则返回null Enumeration getAttributeNames() 返回一个枚举类型的包含r ...

  7. 三个线程ABC,交替打印ABC

    转载与:https://www.cnblogs.com/x_wukong/p/4009709.html 创建3个线程,让其交替打印ABC . 输出如下:  ABCABCABCABC. 方法:使用syn ...

  8. Leetcode-跳跃游戏

    跳跃游戏     给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] ...

  9. Java学习 · 初识 面向对象基础一

    面向对象基础 1.1面向过程与面向对象的区别 面向过程和面向对象二者都是思考问题的方式,再简单的事物时,可以线性思考时使用面向过程,但当事物较为复杂时,只能使用面向对象设计.但二者并不是对立的,在解决 ...

  10. 如何处理 jQuery $(window).resize() 中的方法被多次执行的小问题

    引言: 估计很多同志们在编写浏览器resize()的方法时,都会遇到这样的情况: 当拖动浏览器的边角时,页面中的一些效果随浏览器大小的改变而触发,这一过程开始到结束,resize() 中的方法被执行了 ...