#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define mod 998244353 #define pi acos(-1.0)
#define rep(i,x,n) for(int i=(x); i<(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 1<<30;
const int maxn = 150000+3;
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[2]={-1,1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int t,n,m,d;
int cnt=0;
LL lcm(LL a, LL b)
{
return a/__gcd(a,b)*b;
}
LL cal(LL n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0) return i;
return n;
}
LL a,b,x,y;
int main()
{
cin>>n>>a>>b;
for(int i=1;i<n;i++)
{
cin>>x>>y;
a=__gcd(x*y,a);
b=__gcd(x*y,b);
}
if(a!=1)
printf("%lld\n",cal(a));
else if(b!=1)
printf("%lld\n",cal(b));
else puts("-1");
}
/*
2
3 1
1 1 2
3 2
1 1 2
【题意】
给定n对数,求一个WCD,它满足至少能被每对数中的一个整除,若不存在,输出-1。 【类型】数论 【分析】一开始的思路是求每对数的最小公倍数,然后把这n个最小公倍数求个gcd,然后取其最小因子即可。但这样因为TLE而FST了。后来想想也是,如果每对数中的两个数互质,那么他们的最小公倍数就是1e18左右的大小,求其最小因子的时间复杂度差不多就是1e9,肯定会T。比如下面这组样例: 2
1999999973 1999999943
1999999973 1999999943 其实正解想法差不多,就把第一对中的第一个数和后面每对的乘积求一个gcd,第二个数也和后面的每对的乘积求一个gcd,这样就保证这两个数都是小于等于2e9的,求其最小因子的复杂度<1e5,可行。 PS:其实并不需要求每对数的最小公倍数,求其乘积即可,因为乘积包括了每对数那2个数中的所有因子,且乘积的最小因子一定能被每对数那2个数中的1个整除。 【时间复杂度&&优化】 【trick】 【数据】

CF1025B Weakened Common Divisor【数论/GCD/思维】的更多相关文章

  1. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  2. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  3. CF1025B Weakened Common Divisor 题解

    Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...

  4. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  5. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  6. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  7. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  8. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  9. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

随机推荐

  1. webpack插件url-loader使用规范

    其实说到性能优化,他的范围太广了,今天我们就只聊一聊通过webpack配置减少http请求数量这个点吧. 简单说下工作中遇到的问题吧,我们做的一个项目中首页用了十多张图片,每张图片都是一个静态资源,所 ...

  2. 上下文路径request.getContextPath();与${pageContext.request.contextPath}

    (1) request.getContextPath();与${pageContext.request.contextPath}都是获取上下文路径: 1. request.getContextPath ...

  3. [洛谷P3460] [POI2007]TET-Tetris Attack

    洛谷题目链接:[POI2007]TET-Tetris Attack 题目描述 A puzzle called "Tetris Attack" has lately become a ...

  4. 【uva11987】带删除的并查集

    题意:初始有N个集合,分别为 1 ,2 ,3 .....n.有三种操件1 p q 合并元素p和q的集合2 p q 把p元素移到q集合中3 p 输出p元素集合的个数及全部元素的和. 题解: 并查集.只是 ...

  5. 6、MySQL索引种类

    1.普通索引 这是最基本的索引,它没有任何限制,比如上文中为title字段创建的索引就是一个普通索引,MyIASM中默认的BTREE类型的索引,也是我们大多数情况下用到的索引. –直接创建索引 CRE ...

  6. hdu 1232 畅通工程(并查集算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 畅通工程 Time Limit: 4000/2000 MS (Java/Others)    M ...

  7. Perl6 Bailador框架(4):路径匹配

    use v6; use Bailador; =begin pod /:one/:two/:....路径选择 这个路径, 用/分隔 每个/分隔一个, 如果你只设置两个(/admin/login),时, ...

  8. 64_l3

    libguac-client-ssh-0.9.13-3.20170521git6d2cfda...> 23-May-2017 09:58 64570 libguac-client-ssh-0.9 ...

  9. HDU 6118 度度熊的交易计划 最大费用可行流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118 题意:中文题 分析: 最小费用最大流,首先建立源点 s ,与超级汇点 t .因为生产一个商品需要 ...

  10. ACE_Reactor类

    .ACE反应器框架简介 反应器(Reactor):用于事件多路分离和分派的体系结构模式 对一个文件描述符指定的文件或设备的操作, 有两种工作方式: 阻塞与非阻塞. 在设计服务端程序时,如果采用阻塞模式 ...