传送门:http://codeforces.com/contest/788/problem/B

好题!好题!

首先图不连通的时候肯定答案是0,我们下面讨论图联通的情况

首先考虑,如果我们每条边都经过两边,那么肯定是可行的

因为这样相当于把每条边复制一遍,然后问图中是否存在欧拉路径

既然每条边都出现了两遍,那么所有点的度数一定都是偶数,所以肯定有欧拉路径

现在考虑将某两条边变成出现一遍,这样的话可能会有一些点的度数变成奇数

如果我们把两条非自环的边变成出现一遍,并且这两条边不交于同一个点,那么就会有四个度数为奇数的点,则图中不存在欧拉路径

如果我们把两条非自环的边变成出现一遍,并且这两条边交于同一个点,那么就会有两个度数为奇数的点,存在欧拉路径

如果我们把两条自环边变成出现一遍,所有点的度数仍然为偶数,存在欧拉路径

如果我们把一条自环,一条非自环的边变成出现一遍,那么就会有两个度数为奇数的点,存在欧拉路径

所以一共就几种情况,除去判联通的部分,我们只要记录每个点的度数(不含自环)和自环的数量就好了

因为题目中保证一条边不会出现两遍,所以我们的方法才是可行的

代码:

 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const int MAXN = ; int n, m; namespace Graph {
int head[MAXN], nxt[MAXN<<], to[MAXN<<], eidx;
void init() {
eidx = ;
memset( head, -, sizeof(head) );
}
void adde( int u, int v ) {
to[eidx] = v, nxt[eidx] = head[u], head[u] = eidx++;
}
} bool ing[MAXN] = {}, vis[MAXN] = {}; // ing表示这个点是否存在于图中,因为题目只要求边互相联通,所以对于没有度数的点可以看做不存在
queue<int> q;
bool bfs() { // bfs判联通
using namespace Graph;
for( int i = ; i <= n; ++i )
if( ing[i] ) {
q.push(i), vis[i] = true;
break;
}
while( !q.empty() ) {
int u = q.front(); q.pop();
for( int i = head[u]; ~i; i = nxt[i] ) {
int v = to[i];
if( vis[v] ) continue;
q.push(v), vis[v] = true;
}
}
for( int i = ; i <= n; ++i )
if( ing[i] && !vis[i] )
return false;
return true;
} int deg[MAXN] = {}, loop = ; // 每个点的度数(不含自环)和总的自环数量
int main() {
scanf( "%d%d", &n, &m );
Graph::init();
for( int i = ; i < m; ++i ) {
int u, v; scanf( "%d%d", &u, &v );
ing[u] = ing[v] = true;
if( u != v ) {
Graph::adde(u,v), ++deg[u];
Graph::adde(v,u), ++deg[v];
} else { // 自环
Graph::adde(u,v), ++loop;
}
}
if( !bfs() || m < ) {
puts("");
return ;
}
ll ans = (ll)loop*(m-loop) + (ll)loop*(loop-)/; // 选一个自环和一个非自环,或者选两个自环
for( int i = ; i <= n; ++i )
ans += (ll)deg[i]*(deg[i] - )/; // 选两个非自环,且交于同一点的边
cout << ans << endl;
return ;
}

【题解】Weird journey Codeforces 788B 欧拉路的更多相关文章

  1. Weird journey CodeForces - 788B (路径计数)

    大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...

  2. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  3. CodeForces - 788B Weird journey 欧拉路

    题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次  2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...

  4. Codeforces 789D Weird journey - 欧拉路 - 图论

    Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his mot ...

  5. Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. 【cf789D】Weird journey(欧拉路、计数)

    cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...

  7. Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图

    题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...

  8. codeforces 407 div1 B题(Weird journey)

    codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...

  9. CodeForces - 789D Weird journey

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

随机推荐

  1. 在mesh client示例中加入spi_slave接口(without IDE)

    在mesh client示例中加入spi_slave接口(without IDE) 主要是理解cmake构建的过程,然后修改工程中的inlcude路径及c源文件. 1. 解压mesh_sdk unzi ...

  2. 从SDN鼻祖Nicira到VMware NSX 网络虚拟化平台的简单探讨

    以前的大二层技术,一般是在物理网络底层使用IS-IS路由技术,再在此基础之上,实现数据中心网络的二层扩展,如公有的Trill.SPB技术和Cisco私有的OTV.Fabricpath技术:前沿一些的网 ...

  3. BAT 批处理脚本 教程 【转】

    BAT 批处理脚本 教程 第一章 批处理基础 第一节 常用批处理内部命令简介 批处理定义:顾名思义,批处理文件是将一系列命令按一定的顺序集合为一个可执行的文本文件,其扩展名为BAT或者CMD.这些命令 ...

  4. Linux系统inotify工具安装配置

    inotify主要功能 Inotify 是一个 Linux特性,它监控文件系统操作,比如读取.写入和创建.Inotify 反应灵敏,用法非常简单,并且比 cron 任务的繁忙轮询高效得多.学习如何将 ...

  5. [C++] OOP - Virtual Functions and Abstract Base Classes

    Ordinarily, if we do not use a function, we do not need to supply a definition of the function. Howe ...

  6. NFC学习总结

    NFC 学习总结 1.NFC 的基本概念 NFC 是 Near FieldCommunication 的缩写,即距离无线通信技术.由飞利浦公司和索尼公司共同开发的NFC 是一种非接触式识别和互联技术, ...

  7. Thunder团队第一周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:爱阅app Scrum Master:苗威 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康 ...

  8. Python学习之路3 - 字符串操作&字典

    本节内容: 常用的字符串处理. 格式化输出字符串. 字符串的替换. 字符串和二进制的相互转化. 字典的操作 字符串操作 常用的字符串处理 name = 'vector' print(name.capi ...

  9. 20145214实验五 Java网络编程及安全

    20145214实验五 Java网络编程及安全 实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 实验步骤 我的结对伙伴是 20145219 宋歌,我负责的 ...

  10. 关于GenericJDBCException的问题

    在spring和hibernate整合的初步阶段,还没有编辑hibernate.cfg.xml这个文件,只有一个beans.xml文件.此时遇到了一个bug. Exception in thread ...