传送门:http://codeforces.com/contest/788/problem/B

好题!好题!

首先图不连通的时候肯定答案是0,我们下面讨论图联通的情况

首先考虑,如果我们每条边都经过两边,那么肯定是可行的

因为这样相当于把每条边复制一遍,然后问图中是否存在欧拉路径

既然每条边都出现了两遍,那么所有点的度数一定都是偶数,所以肯定有欧拉路径

现在考虑将某两条边变成出现一遍,这样的话可能会有一些点的度数变成奇数

如果我们把两条非自环的边变成出现一遍,并且这两条边不交于同一个点,那么就会有四个度数为奇数的点,则图中不存在欧拉路径

如果我们把两条非自环的边变成出现一遍,并且这两条边交于同一个点,那么就会有两个度数为奇数的点,存在欧拉路径

如果我们把两条自环边变成出现一遍,所有点的度数仍然为偶数,存在欧拉路径

如果我们把一条自环,一条非自环的边变成出现一遍,那么就会有两个度数为奇数的点,存在欧拉路径

所以一共就几种情况,除去判联通的部分,我们只要记录每个点的度数(不含自环)和自环的数量就好了

因为题目中保证一条边不会出现两遍,所以我们的方法才是可行的

代码:

 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const int MAXN = ; int n, m; namespace Graph {
int head[MAXN], nxt[MAXN<<], to[MAXN<<], eidx;
void init() {
eidx = ;
memset( head, -, sizeof(head) );
}
void adde( int u, int v ) {
to[eidx] = v, nxt[eidx] = head[u], head[u] = eidx++;
}
} bool ing[MAXN] = {}, vis[MAXN] = {}; // ing表示这个点是否存在于图中,因为题目只要求边互相联通,所以对于没有度数的点可以看做不存在
queue<int> q;
bool bfs() { // bfs判联通
using namespace Graph;
for( int i = ; i <= n; ++i )
if( ing[i] ) {
q.push(i), vis[i] = true;
break;
}
while( !q.empty() ) {
int u = q.front(); q.pop();
for( int i = head[u]; ~i; i = nxt[i] ) {
int v = to[i];
if( vis[v] ) continue;
q.push(v), vis[v] = true;
}
}
for( int i = ; i <= n; ++i )
if( ing[i] && !vis[i] )
return false;
return true;
} int deg[MAXN] = {}, loop = ; // 每个点的度数(不含自环)和总的自环数量
int main() {
scanf( "%d%d", &n, &m );
Graph::init();
for( int i = ; i < m; ++i ) {
int u, v; scanf( "%d%d", &u, &v );
ing[u] = ing[v] = true;
if( u != v ) {
Graph::adde(u,v), ++deg[u];
Graph::adde(v,u), ++deg[v];
} else { // 自环
Graph::adde(u,v), ++loop;
}
}
if( !bfs() || m < ) {
puts("");
return ;
}
ll ans = (ll)loop*(m-loop) + (ll)loop*(loop-)/; // 选一个自环和一个非自环,或者选两个自环
for( int i = ; i <= n; ++i )
ans += (ll)deg[i]*(deg[i] - )/; // 选两个非自环,且交于同一点的边
cout << ans << endl;
return ;
}

【题解】Weird journey Codeforces 788B 欧拉路的更多相关文章

  1. Weird journey CodeForces - 788B (路径计数)

    大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...

  2. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  3. CodeForces - 788B Weird journey 欧拉路

    题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次  2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...

  4. Codeforces 789D Weird journey - 欧拉路 - 图论

    Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his mot ...

  5. Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. 【cf789D】Weird journey(欧拉路、计数)

    cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...

  7. Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图

    题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...

  8. codeforces 407 div1 B题(Weird journey)

    codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...

  9. CodeForces - 789D Weird journey

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

随机推荐

  1. Flex 布局浅析

    除了 CSS 中传统的布局系统之外,CSS3还提供了一个新布局系统.在这个新的框模型中,框的子代采用水平或垂直布局,而且可将未使用的空间分配给特定的子代,或者通过“弹性”分配给应展开的子代,在各子代间 ...

  2. 3.配置HDFS HA

    安装zookeeper下载zookeeper编辑zookeeper配置文件创建myid文件启动zookeeper配置HDFS HA配置手动HA配置自动HA启动HDFS HA namenode负责管理整 ...

  3. js经典试题之数据类型

    js经典试题之数据类型 1:输出"B" + "a" + + "B" + "a"的值: 答案:BaNaNa. 分析:因为+ ...

  4. NYOJ 35 表达式求值(逆波兰式求值)

    http://acm.nyist.net/JudgeOnline/problemset.php?typeid=4 NYOJ 35 表达式求值(逆波兰式求值) 逆波兰式式也称后缀表达式. 一般的表达式求 ...

  5. 软件工程第二周PSP

  6. 使用cout进行格式化

    以下内容摘自木缥缈的博客 使用cout进行格式化 ostream插入运算符将值转换为文本格式.在默认情况下,格式化值的方式如下. * 对于char值,如果它代表的是可打印字符,则将被作为一个字符显示在 ...

  7. css那些事儿3 列表与浮动

    一  列表 列表默认为行内块元素,具有宽高,当一个非块元素是无法应用宽高的,比如a 1 有序列表 有ol li组成,其中li为列表项,列表的ol子元素务必为li元素标签,li子内容支持列表任意嵌套,有 ...

  8. VUE01指令

    一.下载Vue2.0的两个版本: 官方网站:http://vuejs.org/ 开发版本:包含完整的警告和调试模式 生产版本:删除了警告,进行了压缩 二.项目结构搭建 这个部分要视频中有详细讲解. 三 ...

  9. php添加扩展 在phpinfo能看到该扩展,但在cli用php -m 却看不到,为什么呢,求指教

    1. 没有出现的原因是:执行时添加上php.ini的文件就可以了    $ /usr/local/php/bin/php -c /usr/local/php/etc/php.ini -m | grep ...

  10. 【Linux】- mv命令

    Linux mv命令用来为文件或目录改名.或将文件或目录移入其它位置. 语法 mv [options] source dest mv [options] source... directory 参数说 ...