1. 复球面 大漠孤烟直, 长河落日圆. $$\bex \bbC\cong \bbS^2\bs \sed{N},\quad \bbC_\infty=\bbC\cup \sed{\infty}\mbox{ 扩充复平面}. \eex$$

2. $C_\infty$ 中一些概念的拓展

(1) $\infty$ 的 $\ve$ 邻域: $$\bex N_\ve(\infty)=\sed{z\in\bbC;\ |z|>\cfrac{1}{\ve}}. \eex$$

(2) Jordan 定理.

(3) 单连通区域 $D$: 怎样画 Jordan 闭曲线, 其内部 (或外部, 包含 $\infty$) 都在 $D$ 中.

(4) 极限: $\dps{\lim_{z\to z_0}f(z)=A}$ 当 $z_0=\infty$ 或 $A=\infty$ 时称为广义极限. 例: $\dps{\lim_{z\to 0}\cfrac{1}{z}=\infty,\ \lim_{z\to \infty}\cfrac{1}{z}=0}$.

(5) 以后, 复平面 $\bbC$, 扩充复平面 $\bbC_\infty$.

作业讲解: P 41-42, T 2, 6 (4) (8) , 7, 11 (1)  (3) .

1. 导数与微分

(1) 定义: 对 $w=f(z),\quad z\in D$, 若 $$\bee\label{diff} \lim_{\lap z\to0}\frac{\lap w}{\lap z}=f'(z) \eee$$ 存在, 则称 $$\bex \sedd{\ba{ll} f\mbox{ 在 }z\mbox{ 处可导},\\ f'(z)\mbox{ 为 } f \mbox{ 在 }z\mbox{ 处的导数}. \ea} \eex$$ 由 \eqref{diff}, $$\bex \frac{\lap w}{\lap z}=f'(z)+o(1) \ra \lap w=f'(z)\lap z+o(|z|) \eex$$ 知 $$\bex \sedd{\ba{ll} f\mbox{ 在 }z\mbox{ 处可微},\\ \rd f(z)=f'(z)\rd z=f'(z)\lap z\mbox{ 为 } f \mbox{ 在 }z\mbox{ 处的微分}. \ea} \eex$$

(2) 注记:

a. 可微 $\ra$ 连续.

b. 反过来不对. 比如 $f(z)=\bar z,\Re z,\Im z,|z|,\cdots$. 如对 $f(z)=\bar z$, $$\bex \frac{\lap w}{\lap z} =\frac{\overline{\lap z}}{\lap z} =\sedd{\ba{ll} 1,&\bbR\ni \lap z\to 0,\\ -1,&i\bbR\ni \lap z\to 0. \ea} \eex$$ 它们都是处处连续, 但处处不可微.

(3) 例: 证明: $f(z)=z^n\ (n=1,2,\cdots)$ 可微, 且 $f'(z)=nz^{n-1}$.

[复变函数]第05堂课 1.4 复球面与 $\infty$; 作业讲解; 2 解析函数 2.1 解析函数的概念与 Cauchy-Riemann 方程的更多相关文章

  1. [复变函数]第11堂课 3.3 Cauchy 积分定理及其推论

    0. 引言 (1) Cauchy 积分定理: 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析且连续到边界 $C$, 则 $\dps{\int_C f(\zeta)\rd \ze ...

  2. [复变函数]第15堂课 4.3 解析函数的 Taylor 展式

    1.  Taylor 定理: 设 $f(z)$ 在 $K:|z-a|<R$ 内解析, 则 $$\bee\label{15:taylor} f(z)=\sum_{n=0}^\infty c_n(z ...

  3. [复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)

    2. 解析函数及其简单性质 (1) 定义: a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析; b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则 ...

  4. [复变函数]第10堂课 3.2 Cauchy 积分定理

    0. 引言 (1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线 ...

  5. [复变函数]第17堂课 5 解析函数的 Laurent 展式与孤立奇点 5. 1 解析函数的 Laurent 展式

    0.  引言 (1)  $f$ 在 $|z|<R$ 内解析 $\dps{\ra f(z)=\sum_{n=0}^\infty c_nz^n}$ (Taylor 级数). (2)  $f$ 在 $ ...

  6. C语言学习书籍推荐《学通C语言的24堂课》下载

    下载地址:点我 编辑推荐 <学通C语言的24堂课>:用持续激励培养良好习惯以良好习惯铸就伟大梦想——致亲爱的读者朋友在开始学习<学通C语言的24堂课>的同时,强烈建议读者朋友同 ...

  7. 《程序员的思维修炼:开发认知潜能的九堂课》【PDF】下载

    <程序员的思维修炼:开发认知潜能的九堂课>[PDF]下载链接: https://u253469.ctfile.com/fs/253469-231196325 内容简介 运用一门程序设计语言 ...

  8. Python学习第五堂课

    Python学习第五堂课推荐电影:华尔街之狼 被拯救的姜哥 阿甘正传 辛德勒的名单 肖申克的救赎 上帝之城 焦土之城 绝美之城 #上节内容: 变量 if else 注释 # ""& ...

  9. 大神教你零基础学PS,30堂课从入门到精通

    ps视频教程,ps自学视频教程.ps免费视频教程下载,大神教你零基础学PS教程视频内容较大,分为俩部分: 大神教你零基础学PS--30堂课从入门到精通第一部分:百度网盘,https://pan.bai ...

随机推荐

  1. java的nio之:java的nio的原理

    转载:http://weixiaolu.iteye.com/blog/1479656 Java NIO原理图文分析及代码实现 前言: 最近在分析hadoop的RPC(Remote Procedure ...

  2. java DecimalFormat

    public class Test{ public static void main(String[] args) throws Exception{ /*DecimalFormat参数,如果是0则会 ...

  3. Questions?

    http://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf http: ...

  4. ES VS Hbase

    http://db-engines.com/en/system/Elasticsearch%3BHBase

  5. vs2010 无法创建 *.edmx(Entity Frame Work) 文件的问题

    当你安装了VS2010或者已经安装了EntityFramework41RC.exe之后发现依然在Add New Item时无法找到ADO.NET Entity Model,有可能是你创建的不是netf ...

  6. OpenJudge计算概论-求出e的值

    /*======================================================================== 求出e的值 总时间限制: 1000ms 内存限制: ...

  7. MySQL分库分表环境下全局ID生成方案 转

    在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库 ...

  8. 结合MongoDB开发LBS应用

    然后列举一下需求:1.实时性要高,有频繁的更新和读取2.可按距离排序支持分页3.支持多条件筛选(一个经纬度数据还包含其他属性,比如社交系统的性别.年龄) 方案简单介绍:1.sphinx geo索引支持 ...

  9. jquery的$.extend和$.fn.extend作用及区别

    jQuery为开发插件提拱了两个方法,分别是: jQuery.fn.extend(); jQuery.extend(); (1)类级别 类级别你可以理解为拓展jquery类,最明显的例子是$.ajax ...

  10. Blitz Templates介绍

    Blitz Templates Blitz Templates-应用于大型互联网项目的非常强大非常快的模板引擎.   下载: sourceforge, 源代码 主页, win32 二进制文件, 其他语 ...