一开始还以为对于每根竖线,只要与过了任意一点的横线相交都可以呢,这样枚举两条线就要O(n^2),结果发现自己想多了。。。

  其实是每个点画根竖线和横线就好,对于相同竖线统计(一直不包含线上点)右上左下总点数的最小值,最后不同竖线求一个最大值。对于每条等于这个最小值最大化的竖线都找一个右下与左上的最大值,排序输出即可。注意这儿排序后需要去重

  思想倒是不难,主要就是麻烦。只需要分别离散化x轴,y轴的点,然后枚举每个点找到四个方向的其他总点数,这儿用树状数组可以简单解决。但是注意空间问题不能开二维,开一维排序x轴,再左右扫一遍,一边计算一边添加点即可,注意x y轴线上的点要减去。先扫一边找到最小值最大化的值与每条竖线包含哪些点,再扫一遍找到等于那个值的竖线中的最大右下左上和

代码写得很麻烦

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const double Pi=acos(-1.0);
const int Max=;
int bit[Max];
struct node
{
int xx1,yy1;
int lup,rup,ldo,rdo;
} poi[Max];
int n;
bool cmp1(struct node p1,struct node p2)
{
if(p1.xx1==p2.xx1)
return p1.yy1<p2.yy1;
return p1.xx1<p2.xx1;
}
bool cmp2(struct node p1,struct node p2)
{
return p1.yy1<p2.yy1;
}
int lowbit(int x)
{
return x&(-x);
}
void Add(int y)
{
while(y<=n)
{
bit[y]++;
y+=lowbit(y);
}
return;
}
int Sum(int y)
{
if(!y)
return ;
int sum=;
while(y>)
{
sum+=bit[y];
y-=lowbit(y);
}
return sum;
}
void Dtz()//离散化
{
sort(poi,poi+n,cmp2);
int m=;
poi[n].yy1=Inf;
for(int i=; i<n; i++)
{
if(poi[i].yy1!=poi[i+].yy1)//注意不能和前一个进行比较,因为前一个已经被赋值
poi[i].yy1 = m++;
else
poi[i].yy1 = m;
} sort(poi,poi+n,cmp1);
m=;
poi[n].xx1=Inf;
for(int i=; i<n; i++)
{
if(poi[i].xx1!=poi[i+].xx1)
poi[i].xx1 = m++;
else
poi[i].xx1 = m;
}
return ;
}
int tem[Max],minx[Max],pos[Max];
void Solve()
{
int sum;
memset(bit,,sizeof(bit));
for(int i=; i<n; i++) //边添加边查询
{
if(i!=&&poi[i].xx1==poi[i-].xx1)
sum++;
else
sum=;
poi[i].ldo=Sum(poi[i].yy1-)-sum;//减一,避免y轴相同的点被计算
poi[i].lup=Sum(n)-Sum(poi[i].yy1);
Add(poi[i].yy1);
} memset(bit,,sizeof(bit));
for(int i=n-; i>=; i--)
{
if(i!=n-&&poi[i].xx1==poi[i+].xx1)
sum++;
else
sum=;
poi[i].rdo=Sum(poi[i].yy1-);
poi[i].rup=Sum(n)-Sum(poi[i].yy1)-sum;
Add(poi[i].yy1);
} int manx=,mans;//统计
int coun=,cnt=;
minx[]=Inf;
for(int i=; i<n; i++)//计算最小值最大的是多少
{
if(!i||poi[i].xx1==poi[i-].xx1)
{
if(poi[i].rup+poi[i].ldo<minx[coun])
minx[coun]=poi[i].rup+poi[i].ldo;
}
else
{
manx=max(manx,minx[coun]);
pos[coun++]=i;//每条同x轴的最后一个的后一个下标
minx[coun]=Inf;
if(poi[i].rup+poi[i].ldo<minx[coun])
minx[coun]=poi[i].rup+poi[i].ldo;
}
}
pos[coun]=n;
manx=max(manx,minx[coun]); for(int i=;i<=coun;i++)
{
if(minx[i]==manx)//此x轴可用
{
mans=;
for(int j=i==?:pos[i-];j<pos[i];j++)
mans=max(mans,poi[j].lup+poi[j].rdo);
tem[cnt++]=mans;
}
} printf("Stan: %d; Ollie:",manx);
sort(tem,tem+cnt);
int cntt=;
for(int i=;i<cnt;i++)//去重
if(tem[i]!=tem[cntt])
tem[++cntt]=tem[i];
for(int i=; i<=cntt; i++)
printf(" %d",tem[i]);
printf(";\n");
return ;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
for(int i=; i<n; i++)
scanf("%d %d",&poi[i].xx1,&poi[i].yy1);
Dtz();//离散化
Solve();
}
return ;
}

POJ 2464 Brownie Points II(树状数组)的更多相关文章

  1. POJ 2464 Brownie Points II --树状数组

    题意: 有点迷.有一些点,Stan先选择某个点,经过这个点画一条竖线,Ollie选择一个经过这条直接的点画一条横线.Stan选这两条直线分成的左下和右上部分的点,Ollie选左上和右下部分的点.Sta ...

  2. hdu 1156 && poj 2464 Brownie Points II (BIT)

    2464 -- Brownie Points II Problem - 1156 hdu分类线段树的题.题意是,给出一堆点的位置,stan和ollie玩游戏,stan通过其中一个点画垂线,ollie通 ...

  3. POJ 2464 Brownie Points II (树状数组,难题)

    题意:在平面直角坐标系中给你N个点,stan和ollie玩一个游戏,首先stan在竖直方向上画一条直线,该直线必须要过其中的某个点,然后ollie在水平方向上画一条直线,该直线的要求是要经过一个sta ...

  4. POJ - 2464 Brownie Points II 【树状数组 + 离散化】【好题】

    题目链接 http://poj.org/problem?id=2464 题意 在一个二维坐标系上 给出一些点 Stan 先画一条过一点的水平线 Odd 再画一条 过Stan那条水平线上的任一点的垂直线 ...

  5. UVA 10869 - Brownie Points II(树阵)

    UVA 10869 - Brownie Points II 题目链接 题意:平面上n个点,两个人,第一个人先选一条经过点的垂直x轴的线.然后还有一个人在这条线上穿过的点选一点作垂直该直线的线,然后划分 ...

  6. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  7. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  8. POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树

    题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...

  9. poj 3321 Apple Tree(一维树状数组)

    题目:http://poj.org/problem?id=3321 题意: 苹果树上n个分叉,Q是询问,C是改变状态.... 开始的处理比较难,参考了一下大神的思路,构图成邻接表 并 用DFS编号 白 ...

随机推荐

  1. FFMpeg 滤镜中英文对照

    FFMpeg ver 20160213-git-588e2e3 滤镜中英文对照 2016.02.17 by 1CM T.. = Timeline support 支持时间轴 .S. = Slice t ...

  2. VS2012 打开cs文件报未找到与约束错误

    一.问题发生 VS2012,更新补丁后的残忍--创建项目未找到与约束匹配的导出 创建项目时无法成功创建,而且提示:未找到与约束ontractNameMicrosoft.VisualStudio.Tex ...

  3. vs版本转换工具

      [转]C#写的工程项目移植转换工具 – 支持VS2005/VS2010/VS2012/VS2013 经常用Visual Studio开发项目的是不是会经常遇到下面这种情况或者类似于这样的情况?用新 ...

  4. [转]Android中Application类的用法

    原文链接:http://www.cnblogs.com/renqingping/archive/2012/10/24/Application.html Application类 Application ...

  5. Effective C++ -----条款10: 令operator=返回一个reference to *this

    比如: Widget& operator=(const Widget& rhs) { ... return* this; } 令赋值(assignment)操作符返回一个referen ...

  6. HDU 4870 Rating(概率、期望、推公式) && ZOJ 3415 Zhou Yu

    其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒 ...

  7. 对QQ、微信等第三方登录的几个思考

    转自:http://www.jianshu.com/p/7f282dfc16fc 今天聊聊注册.登录环节中很常见的第三方登录,如QQ.微信.支付宝.新浪微博等.虽然这些产品的开放平台都提供了标准的接入 ...

  8. 如何激活webstorm 11

    以前使用webstorm 10,可以在网上搜个注册码进行激活.后来升级了webstorm 11,发现原来的注册码和注册机已经不能激活了.查询后,才知道WebStorm 11改变了注册方法,可以在Lic ...

  9. 3ds max不显示网格,转换为可编辑面片

    按G就消失了,快捷键 F3/F4切换线框和面片模式的显示

  10. 分享类shareSDK

    1.新浪微博分享时需要注意: [A] 应用信息->基本信息->应用地址 [B] 应用信息->高级信息->OAuth2.0 授权设置 //当使用新浪微博客户端分享的时候需要按照下 ...