【DP】DMOPC '21 Contest 8 P5 - Tree Building
给定 \(n,m\) 和一个长为 \(m\) 的代价序列,对于一棵 \(n\) 个节点,每个节点度数不超过 \(m\) 的树,定义它的代价为 \(\sum\limits_{i=1}^n a_{deg_i}\)。求代价最小的树的代价。
\(n\le 10^9,m\le 3000,1\le a_i\le 10^9\)。
首先一眼变成选出 \(n\) 个 \(a\) 的和为 \(2n+2\)。经典的背包问题,价值值域和物品数都很大,但是体积值域很小,并且最终要求体积和是一个定值。
套路:如果 \(n\) 是偶数,那么对于任意一种方案,可以将选出的 \(n\) 个物品分成两部分,使得两部分体积之差的绝对值不超过 \(m\)。
证明:滑动窗口,从左滑到右,差的符号改变了,而每次改变量是 \(a_i-a_j\),所以一定存在一个时刻差的绝对值不超过 \(m\)。
于是当 \(n\) 是偶数时,定义 \(\mathrm{solve}(n,L,R)\) 表示解决 \(n\) 个物品,对于要求总体积在 \([L,R]\) 之间的情况求解,那么可以递归到 \(\mathrm{solve}(n/2,(L-m)/2,(R+m)/2)\) 来做,然后自己和自己合并。一共 \(\log\) 层,每层长度至多增加 \(m\),所以复杂度可以接受。
当 \(n\) 是奇数时,直接拎出最后一个数枚举,递归到 \(n-1\)。
计算时间复杂度。发现每次区间长度会 \(+m\) 然后 \(/2\),所以每一层加的 \(m\) 会在后面以 \(m,m/2,m/4,\dots\) 分布,即每层被加的 \(m\) 是从上面来的 \(m,m/2,m/4,\dots\),总和为 \(O(m)\)。所以总时间复杂度为 \(O(m^2\log n)\)。
点击查看代码
// https://dmoj.ca/problem/dmopc21c8p5
//~ #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
#define For(i,a,b) for(int i=a;i<=b;i++)
#define Rev(i,a,b) for(int i=a;i>=b;i--)
#define Fin(file) freopen(file,"r",stdin);
#define Fout(file) freopen(file,"w",stdout);
using namespace std;
const int N=3e3+5; using ll = long long;
int m,a[N];
vector<ll> solve(int n,int L,int R){
//~ printf("solve(%d,%d,%d)\n",n,L,R);
vector<ll> res(R-L+1,1e18);
if(n==1) For(i,L,R) res[i-L]=1<=i&&i<=m?a[i]:1e18;
else if(n&1){
int l=max(L-m,1); vector<ll> vec=solve(n-1,l,R);
For(j,l,R) For(k,max(j+1,L),min(j+m,R)) res[k-L]=min(res[k-L],vec[j-l]+a[k-j]);
}
else{
int l=max((L-m)/2,1),r=(R+m)/2; vector<ll> vec=solve(n/2,l,r);
For(j,l,r) For(k,max(l,L-j),min(r,R-j)) res[j+k-L]=min(res[j+k-L],vec[j-l]+vec[k-l]);
}
return res;
}
int main(){
int n; cin>>n>>m; For(i,1,m) cin>>a[i];
cout<<solve(n,2*n-2,2*n-2)[0]<<'\n';
return 0;
}
【DP】DMOPC '21 Contest 8 P5 - Tree Building的更多相关文章
- HDOJ 1159 Common Subsequence【DP】
HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- 【MySQL】-NO.21.MySQL.1.MySQL.1.001-【Install MySQL5.7 On Windows】
1.0.0 Summary Tittle:[MySQL]-NO.21.MySQL.1.MySQL.1.001-[Install MySQL5.7 On Windows] Style:Web Serie ...
- Kattis - honey【DP】
Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...
- HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】
HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...
- HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- HDOJ 1257 最少拦截系统 【DP】
HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】
HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】
POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...
- HackerRank - common-child【DP】
HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...
- LeetCode:零钱兑换【322】【DP】
LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...
随机推荐
- 云小课 | 一分钟了解AppCube中的应用
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:应用魔方(AppC ...
- 讲透学烂二叉树(五):分支平衡—AVL树与红黑树伸展树自平衡
简叙二叉树 二叉树的最大优点的就是查找效率高,在二叉排序树中查找一个结点的平均时间复杂度是O(log₂N): 在<讲透学烂二叉树(二):树与二叉/搜索/平衡等树的概念与特征>提到 二叉排序 ...
- HTML 首页 欢迎页
HTML 首页 欢迎页,将下面代码复制出来,贴到HTML中,直接运行 <!DOCTYPE html> <html lang="en"> <head&g ...
- Axure 进度条制作
拖两个矩形,一个用来做边框,另一个用来做进度 下图进度条的宽要设为2,如果是1的话,看不到背景色动 百分比 进度条 百分比 [[Math.floor(jdt.width/bk.width100)]] ...
- Excel 2016 VBA 提取单元格的中文字符
启用开发工具 方式一:[右键Sheet1 ]->[查看代码] 方式二:[开发者工具]->[Visual Basic] Function chinese(rng As String) Dim ...
- ChatGPT 插件,组合后更妙了
ChatGPT 插件,组合后更妙 大家好,我是章北海mlpy 昨天极简介绍了一些热门的ChatGPT插件 我测试了一些组合玩法,感觉效率.效果都远超预期. 今天就演示一下如何利用多个插件,高速阅读.理 ...
- 神经网络优化篇:详解动量梯度下降法(Gradient descent with Momentum)
动量梯度下降法 还有一种算法叫做Momentum,或者叫做动量梯度下降法,运行速度几乎总是快于标准的梯度下降算法,简而言之,基本的想法就是计算梯度的指数加权平均数,并利用该梯度更新的权重. 例如,如果 ...
- 基于rest_framework的ModelViewSet类编写登录视图和认证视图
背景:看了博主一抹浅笑的rest_framework认证模板,发现登录视图函数是基于APIView类封装. 优化:使用ModelViewSet类通过重写create方法编写登录函数. 环境:既然接触到 ...
- c#-微软2
练习-编写第一个代码: 在第一次练习中你将使用c#将神圣的程序员用语打印到控制台的标准输出 编写第一行代码: 在软件开发者中,有这么一个传统,那就是将"Hello World!"这 ...
- Codeforces Round #674 (Div. 3) (A - F题题解)
A. Floor Number https://codeforces.com/contest/1426/problem/A 题意: 一个楼房房间号由 \(1\) 递增,一楼仅2个房间.给定一位用户的房 ...