HDU 6662 Acesrc and Travel (换根dp)
However, Zhang and Liu have different preferences for these spots. They respectively set a satisfactory value for each spot. If they visit the ith spot, Zhang will obtain satisfactory value ai, and Liu will obtain bi. Starting with Zhang, they alternately decide the next spot to visit for the sake of fairness. There must be a bus route between the current spot and the next spot to visit. Moreover, they would never like to visit a spot twice. If anyone can't find such a next spot to visit, they have no choice but to end this travel.
Zhang and Liu are both super smart competitive programmers. Either want to maximize the difference between his total satisfactory value and the other's. Now Acesrc wonders, if they both choose optimally, what is the difference between total satisfactory values of Zhang and Liu?
For each test case, the first line contains a single integer n (1≤n≤105), denoting the number of spots. Each of the next two lines contains n integers, a1,a2,⋯,anand b1,b2,⋯,bn (0≤ai,bi≤109), denoting the
satisfactory value of Zhang and Liu for every spot, respectively. Each of the last n−1 lines contains two integers x,y (1≤x,y≤n,x≠y), denoting a bus route between the xth spot and the yth spot. It is reachable from any spot to any other spot through these bus routes.
It is guaranteed that the sum of n does not exceed 5.01×105.
3
1 1 1
0 2 3
1 2
1 3
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define lson l,mid,ls
#define rson mid+1,r,rs
#define ls (rt<<1)
#define rs ((rt<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int loveisblue = ;
const int maxn = ;
const int maxm = ;
const ll Inf = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn], cnt;
struct edge {
int Next, v;
} e[maxm]; void add_edge(int u, int v) {
e[cnt].Next = Head[u];
e[cnt].v = v;
Head[u] = cnt++;
} ll a[maxn]; ll dp1[][maxn];//0由第一个人选择而来,1第二个选择而来
ll dp2[][maxn];//次
bool vis[maxn]; void dfs(int u, int fa) {
bool flag = true;
for (int k = Head[u]; k != -; k = e[k].Next) {
if (e[k].v == fa) {
continue;
}
dfs(e[k].v, u);
flag = false; ll tmp1 = dp1[][e[k].v];
ll tmp0 = dp1[][e[k].v]; //当前由第一个人选择而来的,那下一个一定由第二个人选择而来
if (tmp1 < dp2[][u]) { swap(tmp1, dp2[][u]); }
if (dp2[][u] < dp1[][u]) { swap(dp2[][u], dp1[][u]); } if (tmp0 > dp2[][u]) { swap(tmp0, dp2[][u]); }
if (dp2[][u] > dp1[][u]) { swap(dp2[][u], dp1[][u]); }
} vis[u] = flag;
//叶子节点的特殊处理
if (flag) {
dp1[][u] = ;
dp1[][u] = ;
}
if (dp1[][u] != Inf) dp1[][u] += a[u];
if (dp1[][u] != -Inf) dp1[][u] += a[u];
if (dp2[][u] != Inf) dp2[][u] += a[u];
if (dp2[][u] != -Inf) dp2[][u] += a[u];
} ll ans = -Inf; void dfs1(int u, int fa) { ll tmp0 = dp1[][fa];
ll tmp1 = dp1[][fa]; //如果父亲节点的最值是由u转移来的,那么就要利用次值换根
if (tmp0 == dp1[][u] + a[fa]) {
tmp0 = dp2[][fa];
}
if (tmp1 == dp1[][u] + a[fa]) {
tmp1 = dp2[][fa];
} //如果fa是只有u这一个儿子,并且fa==1时,才会出现这种情况
if (tmp1 == -Inf) {
tmp1 = a[fa];
}
if (tmp0 == Inf) {
tmp0 = a[fa];
}
tmp0 += a[u];
tmp1 += a[u]; //u是叶子节点,直接特判
if (vis[u]) {
ans = max(ans, tmp1);
}
//此段代码和dfs中的完全相同
if (tmp1 < dp2[][u]) { swap(tmp1, dp2[][u]); }
if (dp2[][u] < dp1[][u]) { swap(dp2[][u], dp1[][u]); } if (tmp0 > dp2[][u]) { swap(tmp0, dp2[][u]); }
if (dp2[][u] > dp1[][u]) { swap(dp2[][u], dp1[][u]); } ans = max(ans, dp1[][u]); for (int k = Head[u]; k != -; k = e[k].Next) {
if (e[k].v != fa)dfs1(e[k].v, u);
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
int T;
scanf("%d", &T);
while (T--) {
int n;
ans = -Inf;
cnt = ;
scanf("%d", &n);
for (int i = ; i <= n; i++) {
Head[i] = -;
scanf("%lld", &a[i]);
dp1[][i] = dp2[][i] = Inf;
dp1[][i] = dp2[][i] = -Inf; }
for (int i = ; i <= n; i++) {
ll x;
scanf("%lld", &x);
a[i] -= x;
}
for (int i = ; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
add_edge(x, y);
add_edge(y, x);
}
dfs(, );
ans = dp1[][];
for (int k = Head[]; k != -; k = e[k].Next) {
dfs1(e[k].v, );
}
printf("%lld\n", ans);
}
return ;
}
对代码有问题可以留言
HDU 6662 Acesrc and Travel (换根dp)的更多相关文章
- HDU 6662 Acesrc and Travel 换根DP,宇宙最傻记录
#include<bits/stdc++.h> typedef long long ll; using namespace std; const int maxn=1e6+50; cons ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- codeforces1156D 0-1-Tree 换根dp
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...
随机推荐
- MySQL主备模式的数据一致性解决方案
根据阿里交易型业务的特点,以及在双十一这样业内罕有的需求推动下,我们在官方的MySQL基础上增加了非常多实用的功能.性能补丁.而在使用MySQL的过程中,数据一致性是绕不开的话题之一.本文主要从阿里 ...
- 尖峰7月线上技术分享--Hadoop、MySQL
7月2号晚20:30-22:30 东大博士Dasight分享主题<大数据与Hadoop漫谈> 7月5号晚20:30-22:30 原支付宝MySQL首席DBA分享主题<MySQL ...
- 开窗函数over()中partition by关键字解析
partition by关键字是分析性函数的一部分,它和聚合函数不同的地方在于它能返回一个分组中的多条记录,而聚合函数一般只有一条反映统计值的记录,partition by用于给结果集分组,如果没 ...
- axios细节之绑定到原型和axios的defaults的配置属性
把axios绑定到原型 vue开发者一套很好用的实践,一般来说,实践如果能够让大部分人都接受,会逐渐成为一个默认的标准. // 把axios配置到原型上 Vue.prototype.$axios = ...
- 当async/await碰见forEach-------------爆炸
let p = ['http://img3.imgtn.bdimg.com/it/u=3278834702,2663618759&fm=26&gp=0.jpg', 'http://im ...
- AtCoder Beginner Contest 078 C HSI
虽说这是个水题,但是我做了大概有一个小时吧,才找到规律,刚学概率,还不大会做题. 找到规律后,又想了想,才想到推导过程. 思路:想要知道花费的时间,就要知道提交的次数,我在这里是计算的提交次数的期望, ...
- JAVA内存dump
# 注意点: # 项目运行的用户 # 使用的jdk版本下的jstack去查看 /opt/jdk1..0_191/bin/jmap -dump:format=b,file=/webser/www/`da ...
- java对象转化为json字符串并传到前台
package cc.util; import java.util.ArrayList; import java.util.Date; import java.util.HashMap; import ...
- Spring AOP 的实现 原理
反射实现 AOP 动态代理模式实例说明(Spring AOP 的实现 原理) 比如说,我们现在要开发的一个应用里面有很多的业务方法,但是,我们现在要对这个方法的执行做全面监控,或部分监控.也许我们 ...
- Error While Loading Shared Libraries, Cannot Open Shared Object File
In the "I wish the Internet had an actual correct answer" category comes a question from a ...