1. train_test_split(under_x, under_y, test_size=0.3, random_state=0)  # under_x, under_y 表示输入数据, test_size表示切分的训练集和测试集的比例, random_state 随机种子

2. KFold(len(train_x), 5, shuffle=False)  # len(train_x) 第一个参数数据数据大小, 5表示切分的个数,即循环的次数, shuffle表示是否进行打乱数据

3. recall_score 表示的是召回率, 即预测对的/这个类别的个数

我们将数据分为训练集和测试集,为了确定好参数,我们从训练集中对数据进行再次的切分,切分成训练集和验证集以此来获得好的训练参数

我们对正则化参数c做验证

交叉验证的意思是比如,KFold(len(train_x), 5, shuffle=False) 将索引值分成5份,四分作为训练集,1份作为验证集,为了防止由于部分数据表现不好,导致结果的偏低或者偏高

训练集 验证集

1234      5

2345      1

3451      2

4512      3

5123      4

一共5次循环,对获得的score求平均作为最终的预测得分

我们使用recall_score 来做为验证结果, 使用KFold来进行数据的索引的拆分, 返回最佳的参数

# 进行整体数据的拆分
train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=0) # 进行下采样数据的拆分
under_train_x, under_text_x, under_train_y, under_test_y = train_test_split(under_x, under_y, test_size=0.3, random_state=0)
from sklearn.cross_validation import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import recall_score # 使用交叉验证来选择参数
def printing_KFold_score(train_x, train_y):
"""
进行数据的交叉验证
:param train_x:输入的数据的变量
:param train_y:输入数据的标签
:return: 返回最佳的参数
"""
# 对数据的索引进行拆分
fold = KFold(len(train_x), 5, shuffle=False)
# 正则化参数
c_parameter = [0.01, 0.1, 1, 10, 100]
# 建立DataFrame用于参数和recall得分的储存
train_score = pd.DataFrame(index=range(len(c_parameter), 2), columns=['c_parameter', 'F_score_mean'])
train_score['c_parameter'] = c_parameter
for c in c_parameter:
scores = []
for iter, fol in enumerate(fold, start=1):
lr = LogisticRegression(C=c, penalty='l1')
lr.fit(train_x.iloc[fol[0], :], train_y.iloc[fol[0], :])
pred_y = lr.predict(train_x.iloc[fol[1], :])
# 导入recall_score模块进行计算
score = recall_score(train_y.iloc[fol[1], :], pred_y)
print('{} {}'.format(iter, score))
scores.append(score)
mean_score = np.mean(scores)
train_score['F_score_mean'] = mean_score
print(train_score)
# 根据索引, idxmax() 表示获得最大值的索引,获得最佳的best_parameter
best_parameter = train_score.iloc[train_score['F_score_mean'].idxmax(), :]['c_parameter']
print('the best_parameter is {}'.format(best_parameter)) return best_parameter best_c = printing_KFold_score(under_train_x, under_train_y)

机器学习入门-交叉验证选择参数(数据切分)train_test_split(under_x, under_y, test_size, random_state), (交叉验证的数据切分)KFold, recall_score(召回率)的更多相关文章

  1. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  2. python进行机器学习(四)之模型验证与参数选择

    一.模型验证 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 这里我们将 ...

  3. 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择

    上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...

  4. 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)

    使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...

  5. 机器学习入门07 - 验证 (Validation)

    原文链接:https://developers.google.com/machine-learning/crash-course/validation/ 1- 检查直觉 将一个数据集划分为训练集和测试 ...

  6. python大战机器学习——模型评估、选择与验证

    1.损失函数和风险函数 (1)损失函数:常见的有 0-1损失函数  绝对损失函数  平方损失函数  对数损失函数 (2)风险函数:损失函数的期望      经验风险:模型在数据集T上的平均损失 根据大 ...

  7. 【机器学习】机器学习入门02 - 数据拆分与测试&算法评价与调整

    0. 前情回顾 上一周的文章中,我们通过kNN算法了解了机器学习的一些基本概念.我们自己实现了简单的kNN算法,体会了其过程.这一周,让我们继续机器学习的探索. 1. 数据集的拆分 上次的kNN算法介 ...

  8. 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  9. 吴裕雄 python 机器学习——模型选择参数优化随机搜索寻优RandomizedSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

随机推荐

  1. day13 python学习 迭代器,生成器

    1.可迭代:当我们打印 print(dir([1,2]))   在出现的结果中可以看到包含 '__iter__', 这个方法,#次协议叫做可迭代协议 包含'__iter__'方法的函数就是可迭代函数 ...

  2. NOSQL之MONGODB

    MongoDB 基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案,它是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富, ...

  3. Oracle RAC Failover 详解

    Oracle  RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会 ...

  4. .csv 和 .xls 的区别

    .csv 和 .xls 的区别 .csv .xls 较为通用,易导入至各式表格.资料库等 Microsoft excel的专用档案 文本档案,用记事本就可以打开 二进位档案,只有用excel才能打开 ...

  5. 如何调试触发器-MSSQL (转帖)

    调试触发器 //------------------------------------- 作者:四海为圈(原创) //------------------------------------- 1. ...

  6. Angular 4 路由守卫

    路由守卫 只有当用户已经登录并拥有某些权限时才能进入某些路由 一个有多个表单组成的向导,如注册流程,用户只有在当前组件的组件中填写了满足要求的信息才可以导航到下一个路由 当用户未执行保存操作而试图离开 ...

  7. 打开Visual Studio 2012的解决方案 连接 Dynamics CRM 2011 的Connect to Dynamics CRM Server 在其工具下没有显示

    一.使用TFS 代码管理,发现Visual Studio 2012 菜单栏 工具下的Connect to Dynamics CRM Server 没有显示. 平常打开VS下的工具都会出现Connect ...

  8. ML(1): 入门理论

    机器学习相关的文章太多,选取一篇本人认为最赞的,copy文章中部分经典供自己学习,摘抄至 http://www.cnblogs.com/subconscious/p/4107357.html#firs ...

  9. push is not a function

    push is not a function 今天写js 碰上了这个问题 找了半天百度不得其解. 后来发现,我push的是一个对象 push数组才可以

  10. Java 默认事务级别read committed对binlog_format的需求

    转载: java.sql.SQLException: Cannot execute statement: impossible to write to binary log since BINLOG_ ...