LCA倍增算法
LCA 算法是一个技巧性很强的算法。
十分感谢月老提供的模板。
这里我实现LCA是通过倍增,其实就是二进制优化。
任何一个数都可以有2的阶数实现
例如16可以由1 2 4 8组合得到
5可以由1 2 4 组合得到
便于读者理解 我放一道例题吧
Problem F: 挑战迷宫
Description
所有房间一共由n-1条路连接,使得房间两两之间能够相互达到(构成一棵树),每条路的长度为Wi。
每当小翔和小明都在房间时,他们的神奇手机就能显示两人的位置(两人分别在哪两个房间),现在想请聪明的ACMer
快速地算出他们之间的最短距离。
Input
接下来n-1行,每行输入3个整数u,v,w(1<=u,v<=n,u!=v,w<=10000),表示编号为u和v的房间之间有一条长为w的路。
第n+1行输入整数m(0<m<=100000),表示有m次询问。
接来下m行,每行输入2个整数u,v(1<=u,v<=n),表示小翔和小明当前所在房间的编号。
Output
Sample Input
4
1 2 1
2 3 1
1 4 1
1
3 4
Sample Output
3 这是CSUST选拔赛的一题,表示当时不会LCA 菜的抠脚 (菜是原罪啊)
注意这题时间为1S N为1e6 最短路肯定是不行的,复杂度不行。
n个点n-1条路 保证联通 其实就是每一个点到另外一个点有唯一的路径。
然后这就是一个非常非常裸的LCA。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#include<vector> using namespace std;
#define maxn 100010
struct node {
int x,y;
node(int x=,int y=):x(x),y(y){};
};
int rk[maxn],d[maxn],p[maxn][];
vector<node>a[maxn];
int n;
void dfs(int u,int fa,int cnt) {
rk[u]=cnt;
p[u][]=fa;
int len=a[u].size();
for (int i= ; i<len ; i++) {
int x=a[u][i].x;
if (x!=fa) {
d[x]=d[u]+a[u][i].y;
dfs(x,u,cnt+);
}
}
}
void lca() {
for (int i= ; i<=n ; i++ ) {
for (int j= ; (<<j)<=n ; j++) {
p[i][j]=-;
}
}
for (int j= ; (<<j)<=n ; j++) {
for (int i= ; i<=n ; i++) {
if (p[i][j-]!=-) p[i][j]=p[p[i][j-]][j-];
}
}
}
int query(int x,int y) {
if (rk[x]<rk[y]) swap(x,y );
int k;
for (k= ; (<<(+k))<=rk[x] ; k++);
for (int i= k; i>= ; i--) {
if (rk[x]-(<<i)>=rk[y]) x=p[x][i];
}
if (x==y) return x;
for (int i= k; i>= ; i--) {
if (p[x][i]!=- && p[x][i]!=p[y][i]){
x=p[x][i];
y=p[y][i];
}
}
return p[x][];
}
int main() {
int q,u,v,w;
while(scanf("%d", &n)!=EOF) {
for (int i = ; i < n; i++) {
scanf("%d%d%d", &u, &v, &w);
a[u].push_back(node(v, w));
a[v].push_back(node(u, w));
}
dfs(, -, );
lca();
scanf("%d", &q);
while (q--) {
scanf("%d%d", &u, &v);
printf("%d\n", d[u]+d[v]-*d[query(u, v)]);
}
}
return ;
}
其中DFS(int u,int fa, int cnt)
u表示当前节点 fa为他的父亲节点 cnt代表的是深度;
int rk[maxn]记录深度 d[maxn] 记录节点 p[maxn][30]记录父亲节点的位置
lca() 这个就是精髓所在了 第一步初始化p[i][j]=-1;
第二步就是二进制优化了 p[i][j]=p[p[i][j-1]][j-1] 表示i+2^j=i+2^(j-1)+2^(j-1)
前面都是预处理 第三步query(int x,int y) 求x,y的公共祖先。
先判断深度,然后算出2^k <rk[x] 的k的最大值。
if (rk[x]-(1<<i)>=rk[y]) x=p[x][i];将x的的深度向上回溯2^i
使之更接近rk[y]
for (int i= k; i>=0 ; i--) {
if (p[x][i]!=-1 && p[x][i]!=p[y][i]){
x=p[x][i];
y=p[y][i];
}
}
return p[x][0];
后面就是无脑回溯到公共祖先位置。
非常感谢月老的LCA倍增模板
以上就是我对LCA倍增算法的解析
如果读者还有不懂可以留言给我。
LCA倍增算法的更多相关文章
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- 算法笔记--lca倍增算法
算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int ...
- LCA倍增算法的错误与模板
先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...
- LCA 倍增算法模板
. #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm&g ...
- LCA(最近公共祖先)之倍增算法
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...
- LCA(倍增在线算法) codevs 2370 小机房的树
codevs 2370 小机房的树 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...
- Lca 之倍增算法
引入: 比如说要找树上任意两个点的路上的最大值.如果是一般的做法 会 接近o(n)的搜,从一个点搜到另一个点,但是如果询问多了复杂度就很高了. 然后我们会预处理.预处理是o(n²)的,询问是o(1)的 ...
- POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)
1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...
随机推荐
- volatile简要解析
在当前的Java内存模型下,线程可以把变量保存在本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写.这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值 ...
- Ubuntu14.04上安装Composer
1,查看机子上有没有安装php 2,下载Composer的安装包 3,安装Composer 4,设置Composer全局可访问
- Ubuntu14.04上搭建FTP服务器
Ubuntu上常用的Ftp服务器是vsFTPd.安装前检查下是否已经装好了.用 sudo service vsftpd restart,如果提示重启成功之类的信息,说明此服务器已经安装好了vsFTPd ...
- hihoCoder1330 数组重排
题意 小Hi想知道,如果他每次都按照一种固定的顺序重排数组,那么最少经过几次重排之后数组会恢复初始的顺序? 具体来讲,给定一个1 - N 的排列 P,小Hi每次重排都是把第 i 个元素放到第 Pi个位 ...
- 独立游戏大电影 原名(Indie.Game)
电影链接 独立游戏大电影 感觉很不错呢!!
- Ansible自动化运维笔记3(playbook)
1.基本语法 playbook文件格式为yaml语法.示例如下: 1.1 nginx.yaml --- - hosts: all tasks: - name: Install Nginx Packag ...
- Redis笔记5-redis高可用方案
一.哨兵机制 有了主从复制的实现以后,如果想对主服务器进行监控,那么在redis2.6以后提供了一个"哨兵"的机制.顾名思义,哨兵的含义就是监控redis系统的运行状态.可以启动多 ...
- React是什么,为什么要使用它?
React是Facrbook内部的一个JavaScript类库,已于1年开源,可用于创建Web用户交互界面.它引入了一种新的方式来处理浏览器DOM.那些需要手动更新DOM.费力地记录每一个状态的日子一 ...
- VC下ffmpeg例程调试报错处理
tools/options/directories/include files 添加ffmpeg头文件所在路径 tools/options/directories/library files 添加 ...
- 【mysql】mysql内置函数
mysql常用内置函数 1.mysql字符串函数 contact 字符串连接函数 mysql>select contact("he",'llo');# hello lcase ...