【BZOJ3675】序列分割(斜率优化,动态规划)
【BZOJ3675】序列分割(斜率优化,动态规划)
题面
Description
小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
Input
输入第一行包含两个整数n,k(k+1≤n)。
第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
7 3
4 1 3 4 0 2 3
Sample Output
108
题解
玄学。。。。
我是说我的程序很玄学。。。
先说说正常的做法:
我们考虑一下序列分割的顺序
假设有三段连续的数字\(a,b,c\)
先分割\(a\),再割\(b\)
贡献:\(a*(b+c)+b*c=ab+bc+ca\)
先分割\(b\),再割\(a\)
贡献:\((a+b)*c+a*b=ab+bc+ca\)
上下两者贡献相同
意味着这道题目分割的顺序对于答案并没有影响
所以一个\(O(n^2k)\)的DP很容易想出来
for(int j=1;j<=K+1;++j)
for(int i=1;i<=n;++i)
for(int k=1;k<i;++k)
f[i][j&1]=max(f[i][j&1],f[k][(j-1)&1]+1ll*(a[i]-a[k])*a[k]);
然后,推推式子
发现可以斜率优化
然后就可以搞了,
神TM玄学(我也不知道我是怎么改对的)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 110000
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll f[2][MAX],n,K;
int zy[MAX][210];
ll a[MAX];
int Q[MAX],h,t;
inline ll sqr(ll x){return x*x;}
inline double F(int x,int y,int j)
{
if(a[x]==a[y])
return -1e18;
return 1.0*((f[(j-1)&1][x]-sqr(a[x]))-(f[(j-1)&1][y]-sqr(a[y])))/(a[y]-a[x]);
}
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read()+a[i-1];
for(int j=1;j<=K+1;++j)
{
h=t=0;memset(Q,0,sizeof(Q));
for(int i=1;i<=n;++i)
{
while(h<t&&F(Q[t-1],Q[t],j)>=F(Q[t-1],i,j))Q[t]=0,t--;
Q[++t]=i;
}
for(int i=1;i<=n;++i)
{
//for(int k=1;k<i;++k)
// f[i][j&1]=max(f[i][j&1],f[k][(j-1)&1]+1ll*(a[i]-a[k])*a[k]);
while(h<t&&F(Q[h],Q[h+1],j)<=a[i]*1.0)Q[h]=0,h++;
int k=Q[h];
f[j&1][i]=f[(j-1)&1][k]+1ll*(a[i]-a[k])*a[k];
zy[i][j]=k;
}
}
printf("%lld\n",f[(K)&1][n]);
RG int now=n;
for(int i=K;i;i--)
{
printf("%d ",zy[now][i]);
now=zy[now][i];
}
puts("");
return 0;
}
【BZOJ3675】序列分割(斜率优化,动态规划)的更多相关文章
- bzoj3675[Apio2014]序列分割 斜率优化dp
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3508 Solved: 1402[Submit][Stat ...
- BZOJ3675: [Apio2014]序列分割(斜率优化)
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4186 Solved: 1629[Submit][Status][Discuss] Descript ...
- 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]
序列分割 Time Limit: 40 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...
- 【bzoj3675】[Apio2014]序列分割 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...
- [APIO2014]序列分割 --- 斜率优化DP
[APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...
- BZOJ 3675: 序列分割 (斜率优化dp)
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
- P3648 [APIO2014]序列分割 斜率优化
题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...
- [BZOJ3675]序列分割
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MB Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H ...
- BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...
随机推荐
- 练手项目:利用pygame库编写射击游戏
本项目使用pygame模块编写了射击游戏,目的在于训练自己的Python基本功.了解中小型程序框架以及学习代码重构等.游戏具有一定的可玩性,感兴趣的可以试一下. 项目说明:出自<Python编程 ...
- [Python Study Notes]CS架构远程访问获取信息--Client端v1.0
更新内容: 1.添加entry栏默认ip和port口 2.修正退出功能 3.添加退出自动关闭窗口功能 4.优化cpu显示为固定保留两位小数 '''''''''''''''''''''''''''''' ...
- vagrant使用小结
vagrant使用小结 最近公司用了vagrant的虚拟镜像服务,感觉挺不错的.在此仅记录使用方法. 优点:我们可以通过 Vagrant 封装一个 Linux 的开发环境,分发给团队成员.成员可以在自 ...
- httping:测量网站延迟
遇到网络问题的时候,我们一般会先通过 ping 这个工具来了解基本的情况.httping 与 ping 类似,不过它不是发送 ICMP 请求,而是发送 HTTP 请求.利用 httping,我们可以测 ...
- checkbox/input文本框与文字对齐
3种方法都能实现checkbox文本框或radio文本框与文字对齐: <meta charset="utf-8"> <input style="vert ...
- 对于JDBC数据库的初始化操作
package com.bluesky.connection; import java.sql.Connection; import java.sql.DriverManager; import ja ...
- java9 - 异常处理
Java异常 1.异常初见 System.out.println(1/0); 运行上面语句之后打印出: Exception in thread "main" java.lang.A ...
- QWebSocket 客户端
QWebSocket 客户端 Public Function - QWebSocket(const QString &origin = QString(),QWebSocketProtocol ...
- python技巧
python小技巧: 1.强烈建议使用Python的r前缀,就不用考虑转义的问题了. 2.正则表达式的使用: test = '用户输入的字符串' if re.match(r'正则表达式', test) ...
- 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...