【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集
一、前述
本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类。
同时对模型的保存和恢复做下示例。
二、具体原理
代码一:实现代码
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True)#从本地路径加载进来 # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)#训练集图片
# 10,000 points of test data (mnist.test), and#测试集图片
# 5,000 points of validation data (mnist.validation).#验证集图片 # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784)) #x矩阵是m行*784列
# 初始化都是0,二维矩阵784乘以10个W值 #初始值最好不为0
W = tf.Variable(tf.zeros([784, 10]))#W矩阵是784行*10列
b = tf.Variable(tf.zeros([10]))#bias也必须有10个 y = tf.nn.softmax(tf.matmul(x, W) + b)# x*w 即为m行10列的矩阵就是y #预测值 # 训练
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10))#真实值 m行10列
# 定义损失函数,交叉熵损失函数
# 对于多分类问题,通常使用交叉熵损失函数
# reduction_indices等价于axis,指明按照每行加,还是按照每列加
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))#指明按照列加和 一列是一个类别
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)#将损失函数梯度下降 #0.5是学习率 # 初始化变量
sess = tf.InteractiveSession()#初始化Session
tf.global_variables_initializer().run()#初始化所有变量
for _ in range(1000):
batch_xs, batch_ys = my_mnist.train.next_batch(100)#每次迭代取100行数据
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#每次迭代内部就是求梯度,然后更新参数
# 评估 # tf.argmax()是一个从tensor中寻找最大值的序号 就是分类号,tf.argmax就是求各个预测的数字中概率最大的那一个
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 用tf.cast将之前correct_prediction输出的bool值转换为float32,再求平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 测试
print(accuracy.eval({x: my_mnist.test.images, y_: my_mnist.test.labels})) # 总结
# 1,定义算法公式,也就是神经网络forward时的计算
# 2,定义loss,选定优化器,并指定优化器优化loss
# 3,迭代地对数据进行训练
# 4,在测试集或验证集上对准确率进行评测
代码二:保存模型
# 有时候需要把模型保持起来,有时候需要做一些checkpoint在训练中
# 以致于如果计算机宕机,我们还可以从之前checkpoint的位置去继续
# TensorFlow使得我们去保存和加载模型非常方便,仅需要去创建Saver节点在构建阶段最后
# 然后在计算阶段去调用save()方法 from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True) # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)
# 10,000 points of test data (mnist.test), and
# 5,000 points of validation data (mnist.validation). # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784))
# 初始化都是0,二维矩阵784乘以10个W值
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # 训练
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10))
# 定义损失函数,交叉熵损失函数
# 对于多分类问题,通常使用交叉熵损失函数
# reduction_indices等价于axis,指明按照每行加,还是按照每列加
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # 初始化变量
init = tf.global_variables_initializer()
# 创建Saver()节点
saver = tf.train.Saver()#在运算之前,初始化之后 n_epoch = 1000 with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epoch):
if epoch % 100 == 0:
save_path = saver.save(sess, "./my_model.ckpt")#每跑100次save一次模型,可以保证容错性
#直接保存session即可。 batch_xs, batch_ys = my_mnist.train.next_batch(100)#每一批次跑的数据 用m行数据/迭代次数来计算出来。
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) best_theta = W.eval()
save_path = saver.save(sess, "./my_model_final.ckpt")#保存最后的模型,session实际上保存的上面所有的数据
代码三:恢复模型
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf # mn.SOURCE_URL = "http://yann.lecun.com/exdb/mnist/"
my_mnist = input_data.read_data_sets("MNIST_data_bak/", one_hot=True) # The MNIST data is split into three parts:
# 55,000 data points of training data (mnist.train)
# 10,000 points of test data (mnist.test), and
# 5,000 points of validation data (mnist.validation). # Each image is 28 pixels by 28 pixels # 输入的是一堆图片,None表示不限输入条数,784表示每张图片都是一个784个像素值的一维向量
# 所以输入的矩阵是None乘以784二维矩阵
x = tf.placeholder(dtype=tf.float32, shape=(None, 784))
# 初始化都是0,二维矩阵784乘以10个W值
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b)
# labels是每张图片都对应一个one-hot的10个值的向量
y_ = tf.placeholder(dtype=tf.float32, shape=(None, 10)) saver = tf.train.Saver() with tf.Session() as sess:
saver.restore(sess, "./my_model_final.ckpt")#把路径下面所有的session的数据加载进来 y y_head还有模型都保存下来了。 # 评估
# tf.argmax()是一个从tensor中寻找最大值的序号,tf.argmax就是求各个预测的数字中概率最大的那一个
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 用tf.cast将之前correct_prediction输出的bool值转换为float32,再求平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 测试
print(accuracy.eval({x: my_mnist.test.images, y_: my_mnist.test.labels}))
【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集的更多相关文章
- 李宏毅 Keras手写数字集识别(优化篇)
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的trai ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- Python实现神经网络算法识别手写数字集
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...
- Pytorch卷积神经网络识别手写数字集
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 #首先导入包 import torchfrom ...
- keras和tensorflow搭建DNN、CNN、RNN手写数字识别
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...
- tensorflow笔记(四)之MNIST手写识别系列一
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...
- tensorflow笔记(五)之MNIST手写识别系列二
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...
- [机器学习] keras:MNIST手写数字体识别(DeepLearning 的 HelloWord程序)
深度学习界的Hello Word程序:MNIST手写数字体识别 learn from(仍然是李宏毅老师<机器学习>课程):http://speech.ee.ntu.edu.tw/~tlka ...
- TensorFlow下利用MNIST训练模型识别手写数字
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...
随机推荐
- Java基础之抽象类
/* 1.抽象类的概述: 动物不应该定义为具体的东西,而且动物中的吃,睡等也不应该是具体的. 我们把一个不是具体的功能称为抽象的功能,而一个类中如果有抽象的功能,该类必须是抽象类. 抽象类的特点: A ...
- Java 学习笔记 (二) Selenium WebDriver Java 弹出框
下面这段实例实现了以下功能: 1. profile使用用户本地电脑上的 (selenium 3有问题.因为selenium 3把profile复制到一个temp文件夹里,但并不复制回去.所以每次打开仍 ...
- docker开机自动重启参数
docker run -ti -d --privileged --restart=always -p : -p : -v /apps/qkaoauth:/apps/qkaoauth docker.qk ...
- 【codeforces 698B】 Fix a Tree
题目链接: http://codeforces.com/problemset/problem/698/B 题解: 还是比较简单的.因为每个节点只有一个父亲,可以直接建反图,保证出现的环中只有一条路径. ...
- h5区块链项目实战
近来区块链一词很热门,网络上关乎其讨论也很多,这里就不解释了,毕竟几句话也是说不清楚的. 最近得空利用HTML5+css3+jQ开发了一个移动端的区块链项目,感觉界面.布局.效果还是ok的. 项目效果 ...
- 深入浅出Git教程(转载)
目录 一.版本控制概要 1.1.什么是版本控制 1.2.常用术语 1.3.常见的版本控制器 1.4.版本控制分类 1.4.1.本地版本控制 1.4.2.集中版本控制 1.4.3.分布式版本控制 1.5 ...
- #利用openCV裁脸
#利用openCV裁脸import cv2 def draw_rects(img, rects): for x, y, w, h in rects: cv2.rectangle(img, (x, y) ...
- 微服务(入门四):identityServer的简单使用(客户端授权)
IdentityServer简介(摘自Identity官网) IdentityServer是将符合规范的OpenID Connect和OAuth 2.0端点添加到任意ASP.NET核心应用程序的中间件 ...
- Vue 进阶之路(四)
之前的文章我们已经对 vue 有了初步认识,这篇文章我们通过一个例子说一下 vue 的样式绑定. 现在我们想要是想这样一个需求,页面上有个单词,当我们点击它的时候颜色变为红色,再点击一次变为原来的颜色 ...
- .Net Core 权限验证与授权(AuthorizeFilter、ActionFilterAttribute)
在.Net Core 中使用AuthorizeFilter或者ActionFilterAttribute来实现登录权限验证和授权 一.AuthorizeFilter 新建授权类AllowAnonymo ...