Cheapest Palindrome
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10943   Accepted: 5232

Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M 
Line 2: This line contains exactly M characters which constitute the initial ID string 
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

Source

 
 
 
---------------------------------------------------------------------------------------------

吐槽:最近怕是要废了,马上期中考,考完noip。死在作业上了。

分析:

感觉没有什么讲得比他好了  -->>  传送门
 
 
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int inv[],dp[][];
int main()
{
int n,m;
string s;
cin>>n>>m>>s;
for(int i=;i<n;i++)
{
char c;int a,b;
cin>>c>>a>>b;
inv[c]=min(a,b); //这题删减就是套路,既然删1个是回文的话,我们也可以增加1个变成回文,所以只需取最小值
}
for(int i=m-;i>=;i--)
{
for(int j=i+;j<m;j++)
{
dp[i][j]=min(dp[i+][j]+inv[s[i]],dp[i][j-]+inv[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+][j-]);//已经是回文不需要增加费用了
}
}
cout<<dp[][m-];
return ;
}

【POJ】3280 Cheapest Palindrome(区间dp)的更多相关文章

  1. POJ 3280 Cheapest Palindrome (区间DP) 经典

    <题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...

  2. POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )

    题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价 ...

  3. POJ 3280 - Cheapest Palindrome - [区间DP]

    题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...

  4. POJ 3280 Cheapest Palindrome(DP 回文变形)

    题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 ...

  5. (中等) POJ 3280 Cheapest Palindrome,DP。

    Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system ...

  6. POJ 3280 Cheapest Palindrome【DP】

    题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于 ...

  7. POJ 3280 Cheapest Palindrome(DP)

    题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j ...

  8. POJ 3280 Cheapest Palindrome 简单DP

    观察题目我们可以知道,实际上对于一个字母,你在串中删除或者添加本质上一样的,因为既然你添加是为了让其对称,说明有一个孤立的字母没有配对的,也就可以删掉,也能满足对称. 故两种操作看成一种,只需要保留花 ...

  9. POJ 3280 Cheapest Palindrome (DP)

     Description Keeping track of all the cows can be a tricky task so Farmer John has installed a sys ...

  10. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

随机推荐

  1. vue.js 源代码学习笔记 ----- instance index

    import { initMixin } from './init' import { stateMixin } from './state' import { renderMixin } from ...

  2. Function.bind 方法

    this.num = 9; var mymodule = { num: 81, getNum: function() { return this.num; } }; module.getNum(); ...

  3. [置顶] 曙光到来,我的新书《Android进阶之光》已出版

    独立博客版本请点击这里 由来 2016年我开始建立了自己的知识体系,所有的文章都是围绕着这个体系来写,随着这个体系的慢慢成长,开始有很多出版社联系我写书,因为比较看好电子工业出版社,就顺理成章的开始了 ...

  4. iOS - 正则表达式判断邮箱、身份证,车牌,URL等..是否正确:

    //邮箱 + (BOOL) validateEmail:(NSString *)email { NSString *emailRegex = @"[A-Z0-9a-z._%+-]+@[A-Z ...

  5. apt-get -f install

    http://zhidao.baidu.com/link?url=tZLEfm1Ycc1pWS67-95fXU596CtwA_1l2pPfzINUTxvOCvWdf3JZsWuZNxsxn0Jv6Om ...

  6. 【剑指offer】数组中的逆序对。C++实现

    原创文章,转载请注明出处! 博客文章索引地址 博客文章中代码的github地址 # 题目 # 思路 基于归并排序的思想统计逆序对:先把数组分割成子数组,再子数组合并的过程中统计逆序对的数目.统计逆序对 ...

  7. ios逆向工程-内部钩子(Method Swizzling)

    Method Swizzling(方法调配) 怎么说呢,先了解什么是钩子为什么用钩子,学过C++的朋友应该清楚,hook就是用来获得(截断/改变)底层调用的方法.这样我们可以自由的修改或者读取一些想要 ...

  8. POJ1741 Tree + BZOJ1468 Tree 【点分治】

    POJ1741 Tree + BZOJ1468 Tree Description Give a tree with n vertices,each edge has a length(positive ...

  9. 将 UWP 的有效像素(Effective Pixels)引入 WPF

    在很久很久以前,WPF 诞生之初,有一个神奇的单位,它的名字叫做——设备无关单位(DIP,Device Independent Unit).微软给它描绘了一片美好的愿景——在任何显示器上显示的尺寸是相 ...

  10. 《selenium2 python 自动化测试实战》(10)——下拉框和alert

    # coding: utf-8 from selenium import webdriverfrom selenium.webdriver.common.action_chains import Ac ...