[CC-SEABUB]Sereja and Bubble Sort

题目大意:

一个\(n(n\le100)\)个数的排列\(A\),有两种操作:

  1. 交换两个相邻元素;
  2. 等概率随机打乱整个序列。

最多执行\(k(k\le10^{18})\)次操作,使得最后逆序对数量尽可能小,求最后逆序对数量期望值。

单个测试点\(T(T\le100)\)组数据。

思路:

一个基本性质是每交换两个相邻元素都可以消去一个逆序对。

一组询问的答案要么是直接通过交换消去所有的逆序对,要么是通过若干次随机打乱以后再通过交换相邻元素消去逆序对。

对于第一种情况,直接求逆序对即可。答案为\(\min(cnt-k,0)\)。

对于第二种情况,显然打乱以后的排列与\(A\)本身无关,因此考虑动态规划预处理所有答案。

\(f[i][j][k]\)表示排列的长度为\(i\),有\(j\)个逆序对,再经过不超过\(k\)次操作后,逆序对个数的期望。

\(g[i][j]\)表示排列的长度为\(i\),再经过不超过\(j\)次操作后,逆序对个数的期望。

\(h[i][j]\)表示排列的长度为\(i\),逆序对个数为\(j\)的概率。

转移是\(g[i][j]=\sum f[i][k][j]\times h[i][k]\)。

考虑不同取值的\(k\)如何转移。

  1. \(k\le j\),在\(j\)步操作内就可以消去所有的逆序对,贡献为\(0\);
  2. \(j<k\le\lfloor j+g[i][j-1]\rfloor\),尽可能地交换,就算不能消去全部,期望也比打乱以后更优。贡献是\(\sum h[i][k]\times(k-j)\);
  3. 剩下的情况,重新打乱更优,贡献为\(g[i][j-1]\)。

使用前缀和优化即可。

预处理复杂度\(\mathcal O(n^4)\),单次询问复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=101,M=4951;
int64 k;
int n,a[N];
double f[N][M],h[N][M],g[N][M];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void reset() {
std::fill(&val[1],&val[n]+1,0);
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) ret+=val[p];
return ret;
}
void modify(int p) {
for(;p<=n;p+=lowbit(p)) val[p]++;
}
};
FenwickTree t;
inline int calc() {
int ret=0;
t.reset();
for(register int i=n;i>=1;i--) {
ret+=t.query(a[i]);
t.modify(a[i]);
}
return ret;
}
int main() {
h[1][0]=1;
for(register int i=2;i<N;i++) {
for(register int j=0;j<i;j++) {
for(register int k=0;k<=(i-1)*(i-2)/2;k++) {
h[i][j+k]+=h[i-1][k];
}
}
}
double fac=1;
for(register int i=1;i<N;i++) {
fac*=i;
for(register int j=0;j<=i*(i-1)/2;j++) {
h[i][j]/=fac;
}
}
for(register int i=1;i<N;i++) {
for(register int j=1;j<=i*(i-1)/2;j++) {
f[i][j]=f[i][j-1]+h[i][j]*j;
h[i][j]+=h[i][j-1];
}
}
for(register int i=1;i<N;i++) {
const int m=i*(i-1)/2;
g[i][0]=f[i][m];
for(register int j=1;j<=m;j++) {
const int l=std::min(j+(int)g[i][j-1],m);
g[i][j]+=f[i][l]-f[i][j]-j*(h[i][l]-h[i][j]);
g[i][j]+=g[i][j-1]*(h[i][m]-h[i][l]);
}
}
for(register int T=getint();T;T--) {
n=getint(),k=getint();
for(register int i=1;i<=n;i++) a[i]=getint();
double ans=std::max(calc()-k,0ll);
if(k!=0) ans=std::min(ans,g[n][std::min(k-1,(int64)n*(n-1)/2)]);
printf("%f\n",ans);
}
return 0;
}

[CC-SEABUB]Sereja and Bubble Sort的更多相关文章

  1. Java中的经典算法之冒泡排序(Bubble Sort)

    Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...

  2. Bubble Sort (5775)

    Bubble Sort Problem Description   P is a permutation of the integers from 1 to N(index starting from ...

  3. Bubble Sort [ASM-MIPS]

    # Program: Bubble sort # Language: MIPS Assembly (32-bit) # Arguments: 5 unordered numbers stored in ...

  4. HDU 5775 Bubble Sort(冒泡排序)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  5. 2016 Multi-University Training Contest 4 Bubble Sort(树状数组模板)

    Bubble Sort 题意: 给你一个1~n的排列,问冒泡排序过程中,数字i(1<=i<=n)所到达的最左位置与最右位置的差值的绝对值是多少 题解: 数字i多能到达的最左位置为min(s ...

  6. 快速幂取模 POJ 3761 bubble sort

    题目传送门 /* 题意:求冒泡排序扫描k次能排好序的全排列个数 数学:这里有一个反序列表的概念,bj表示在j左边,但大于j的个数.不多说了,我也是看网上的解题报告. 详细解释:http://blog. ...

  7. 冒泡排序(Bubble Sort)

    常见的排序算法有Bubble Sort.Merge Sort.Quick Sort 等,所有排序算的基本法思想都是把一个无限大的数据规模通过算法一步步缩小,指导最后完成排序. 这里分享一下Buuble ...

  8. [算法] 冒泡排序 Bubble Sort

    冒泡排序(Bubble Sort,台湾另外一种译名为:泡沫排序)是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没 ...

  9. HDU 5775 Bubble Sort (线段树)

    Bubble Sort 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5775 Description P is a permutation of t ...

随机推荐

  1. 【洛谷 P4134】 [BJOI2012]连连看(费用流)

    题目链接 首先是可以\(O(n^2)\)枚举出所有符合要求的点对的,然后考虑建图. 还是拆点把每个点拆成入点和出点,源点连入点,出点连汇点,流量都是1,费用都是0. 然后对于没对符合要求的\((x,y ...

  2. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

  3. elasticsearch集群介绍及优化【转】

    elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展)或者购买更多的服务器(横向扩展),Elasticsearch能从更强大的硬件中获得更好的性能,但是纵 ...

  4. 用sar进行CPU利用率的分析

    07:40:17 PM       CPU     %user     %nice   %system   %iowait    %steal     %idle07:40:19 PM       a ...

  5. Spring Boot 在接收上传文件时,文件过大异常处理问题

    Spring Boot 在接收上传文件时,文件过大时,或者请求过大,spring内部处理都会抛出异常,并且捕获不到. 虽然可以通过调节配置,增大 请求的限制值. 但是还是不太方便. 之所以捕获不到异常 ...

  6. js实现静态页面跳转传参

    最近有个项目: 存静态web服务,一个新闻页面列表出所有新闻摘要信息,然后通过点击新闻详情访问到该新闻的详情页面: 新闻展示的页面通过ajax请求接口获取到新闻的摘要信息,预计想通过id的方式访问到新 ...

  7. MySQL之正则表达式

    一.介绍 正则表达式用来描述或者匹配符合规则的字符串.它的用法和like比较相似,但是它又比like更强大,能够实现一些很特殊的规则匹配:正则表达式需要使用REGEXP命令,匹配上返回"1& ...

  8. Binary Tree Zigzag Level Order Traversal——关于广度优先的经典面试题

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  9. linux shell 一些命令

    https://stackoverflow.com/questions/918886/how-do-i-split-a-string-on-a-delimiter-in-bash wc: https: ...

  10. springcloud 出现unavailable-replicas

    springcloud 出现unavailable-replicas 原因: 1. 部分服务不可用 2. 直接使用了ip地址作为hostname application.properties # 不能 ...