题目:

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

输入:

一个整数N。

输出:

如题。

Sample  Input
4

Sample Output

4

Hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

思路:

对于本题,因为是使得为质数,所以必然要枚举小于等于的质数,那么对于每一个质数

只需要求在区间中,满足有序对互质的对数。

也就是说,现在问题转化为:在区间中,存在多少个有序对使得互质,这个问题就简单啦,因为

是有序对,不妨设,那么我们如果枚举每一个,小于有多少个互素,这正是欧拉函数。所以

我们可以递推法求欧拉函数,将得到的答案乘以2即可,但是这里乘以2后还有漏计算了的,那么有哪些呢?

且为素数的情况,再加上就行了。

另外,在bzoj上好像空间限制的原因要用埃氏筛法筛质数,而在nyzoj上,数据点较大,最好用欧拉筛筛质数。

//nyzoj(乌市一中在线评测) www.nyzoj.com:5283 题目:blcup (10053)

代码如下:

//bzoj AC版:

#include<cstdio>
typedef long long ll;
const ll N=1e7+;
ll n,f[N],phi[N];
bool prime[N];
ll p[N],cnt;
void prework()
{
for (int i=;i<=n;i++) prime[i]=;
for (int i=;i<=n;i++)
{
if (prime[i])
{
p[++cnt]=i;
for (int j=i<<;j<=n;j+=i)
prime[j]=;
}
}
}
void Er()
{
for (int i=;i<=n;i++) phi[i]=i;
for (int i=;i<=n;i+=) phi[i]>>=;
for (int i=;i<=n;i+=)
{
if (phi[i]==i)
for (int j=i;j<=n;j+=i)
phi[j]=phi[j]-phi[j]/i;
}
f[]=;
for (int i=;i<=n;i++)
f[i]=f[i-]+(phi[i]<<);
}
ll solve()
{
ll ans=;
for (int i=;i<=cnt;i++)
{
ans+= + f[n/p[i]] ;
}
return ans;
}
int main()
{
scanf ("%lld",&n);
prework();
Er();
printf("%lld",solve());
return ;
}

//nyzoj AC 版:

#include<cstdio>
typedef long long ll;
const ll N=1e7+;
ll n,f[N],phi[N];
int v[N];
ll p[N],cnt;
void prework()
{
for (int i=;i<=n;i++)
{
if (v[i]==)
{
v[i]=i; p[++cnt]=i;
}
for (int j=;j<=cnt;j++)
{
if (p[j]>v[i] || p[j]>n/i) break;
v[i*p[j]]=p[j];
}
}
}
void Er()//递推求欧拉函数
{
for (int i=;i<=(n>>);i++) phi[i]=i;
for (int i=;i<=(n>>);i+=) phi[i]>>=;
for (int i=;i<=(n>>);i+=)
{
if (phi[i]==i)
for (int j=i;j<=(n>>);j+=i)
phi[j]=phi[j]-phi[j]/i;
}
f[]=;
for (int i=;i<=(n>>);i++)
f[i]=f[i-]+(phi[i]<<);
}
ll solve()
{
ll ans=;
for (int i=;i<=cnt;i++)
{
ans+= + f[n/p[i]] ;
}
return ans;
}
int main()
{
scanf ("%lld",&n);
prework();
Er();
printf("%lld",solve());
return ;
}

求解范围中 gcd(a,b)== prime 的有序对数的更多相关文章

  1. 利用python求解物理学中的双弹簧质能系统详解

    利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...

  2. 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组

    题目描述: 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组. 说明:初始化 nums1 和 nums2 的元素数量分别为 m ...

  3. iOS开发中GCD在多线程方面的理解

    GCD为Grand Central Dispatch的缩写. Grand Central Dispatch (GCD)是Apple开发的一个多核编程的较新的解决方法.在Mac OS X 10.6雪豹中 ...

  4. 关于多线程中GCD的使用

    GCD 分为异步和同步 异步: ```objc  dispatch_async (  参数1  , {      } 同步: dispatch_sync( 参数1   , {   } ``` ###参 ...

  5. Swift中GCD与NSOperation相关

    GCD Swift 3必看:从使用场景了解GCD新API 常用写法: dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_ ...

  6. iOS中GCD的使用小结

    http://www.jianshu.com/p/ae786a4cf3b1 本篇博客共分以下几个模块来介绍GCD的相关内容: 多线程相关概念 多线程编程技术的优缺点比较? GCD中的三种队列类型 Th ...

  7. 为什么因式分解n=pq分别得到pq是求解密钥中d的关键

    从d的来源来说,它是这样来的: "找到一个数d,使得ed-1能够被z整除.即给定e,选择数d,使得ed被z除的余数为1",即  ed=1 (mod z) 上面这句话中,为了求d,我 ...

  8. 剑指 Offer 30. 包含min函数的栈 + 双栈实现求解栈中的最小值

    剑指 Offer 30. 包含min函数的栈 Offer_30 题目描述: 题解分析: 题目其实考察的是栈的知识,本题的目的是使用两个栈来求解最小值. 第二个栈主要用来维护第一个栈中的最小值,所以它里 ...

  9. C++求解数组中出现超1/4的三个数字。

    #include <iostream> using namespace std; //求x!中k因数的个数. int Grial(int x,int k) { int Ret = 0; w ...

随机推荐

  1. [Catalan数]1086 栈、3112 二叉树计数、3134 Circle

    1086 栈 2003年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 栈是计算机中 ...

  2. 【BZOJ4375】Selling Tickets 随机化

    [BZOJ4375]Selling Tickets Description 厨师在一次晚宴上准备了n道丰盛的菜肴,来自世界各地的m位顾客想要购买宴会的门票.每一位顾客都有两道特别喜爱的菜,而只要吃到了 ...

  3. echart 图表自定义样式

    initChart: function (id) { this.charts = echarts.init(document.getElementById(id)) this.charts.setOp ...

  4. S-形函数广泛应用于ANN 的激活函数

    Logistic function hyperbolic tangent   arctangent function   Gudermannian function   Error function ...

  5. 我的Android进阶之旅------>如何将Android源码导入Eclipse中来查看(非常实用)

    Android源码下载完成的目录结构如如所示: step1:将.classpath文件拷贝到源代码的根目录 Android源码支持多种IDE,如果是针对APP层做开发的话,建议大家使用Eclipse开 ...

  6. Django在不启动server的情况下调用方法

    from django.conf import settingsfrom django import template settings.configure() a = template.Templa ...

  7. Excel控制IE

    ---恢复内容开始--- 1.初始化and连接http网页 Set ie = CreateObject("InternetExplorer.Application") ie.Vis ...

  8. python元组和列表区别

    元组可以简单认为是一个只读的列表 tuper = const list

  9. iOS:学习runtime的理解和心得 (转)

    Runtime是想要做好iOS开发,或者说是真正的深刻的掌握OC这门语言所必需理解的东西.最近在学习Runtime,有自己的一些心得,整理如下, 一为 查阅方便 二为 或许能给他人一些启发, 三为 希 ...

  10. 【leetcode刷题笔记】Set Matrix Zeroes

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. 题解:因为题 ...