省常中模拟 Test3 Day2
matrix
找规律
题意:给定一个 N*N 的只有 0 和 1 的矩阵,有 Q 个操作,分三种:1. 将某行上的所有数字取反;2. 将某列上的所有数字取反;3. 输出 sum{ a[i][j]*a[j][i] } mod 2。N <=1000,Q<=5*10^5。
解法:初看题目会觉得很棘手。然后可以发现,对于不在对角线上的点,a[i][j]*a[j][i] 会被累加两次(一次是在计算 (i, j) 时,另一次是在计算 (j, i) 时),由同余定理可知,无论 a[i][j] 或 a[j][i] 的值为多少,都不会影响到求余的结果。所以对角线上的 a(i, i) 才是影响结果的关键。当对角线上的 1 的个数为奇数时,答案就为 1;否则为 0。那么我们可以设一个变量 ans,ans 的初始值由扫描初始矩阵得到。每进行一次 1 或 2 操作,就将 ans 取反。遇到 3 操作直接输出即可。
steins
贪心
题意:给出一些顺序排列的长短不一的矩形,宽度都为 1,要用宽度为 1 的刷子进行横向或竖向填充,问最小填充次数使得所有矩形被完全填充。
初步解法:一个只能骗很少部分分的算法:每次选择高度最小的矩形,记其高度为 h,分别向左右进行横向填充,则这一步的填充次数为 h。不断重复此步骤。这种算法完全抛弃了竖向的填充方式,很明显拿不了多少分数。
正解:不算严格意义上的贪心,有点像贪心和动规的结合。对于区间 [l, r],找到区间内的最小高度 h,此时有两种决策:1. 用横向方式填充最短矩形,然后递归两个子区间;2. 用纵向方式填充区间内所有矩形。计算出两种决策分别的花费,取其较小值。
archer
扫描线+线段树
题意:求矩形并的面积。
初步解法:模拟。出题人很良心地给了 30 分。
正解:其实是很经典的题目,之前在书上也看到过类似的求矩形并的周长的方法(POJ 的 Picture 一题),但是从来没写过。
假设有一条扫描线,从左往右扫描,遇到矩形的入边就将其投影到线段树上,遇到矩形的出边就将其从线段树上删去。每次累加扫描到的相邻两条线段的横坐标之差与线段树上的总线段长度的乘积。
上面这段话很笼统,更详细地说:
- 将题目给的每个矩形拆分成左右两条边,记录边的长度、横坐标、是入边还是出边,并将所有边排序;
- 顺序枚举每条边,如果是入边就将其插入到线段树,如果是出边就将其从线段树中删除,具体实现:
- 为线段树的每个结点增加两个域:cover 与 total。cover 表示该线段(注意只是本结点而不包含子树)被完整地覆盖了多少次,total 表示该线段内 cover>0 的线段总长度;
- 每次插入一条线段,就将其对应的线段树结点的 cover 加 1;删除一条线段则反之。那么 cover>0 就表示该结点对应的线段被完全覆盖,则其 total = right-left;如果 cover=0 就表示该结点对应的线段没有被完全覆盖,但是有可能被部分覆盖,则其 total 由左右子树累加得到;
- 插入(删除)一条边后累加答案,累加的值为:本次扫描到的边的横坐标减去上次扫描到的边的横坐标乘以目前线段树中被覆盖的线段总长度,即 ans += (x(i)-x(i-1))*root.total。
省常中模拟 Test3 Day2的更多相关文章
- 省常中模拟 Test2 Day2
two 模拟 大意:给你一个 N 位二进制数,有四种操作:加1.减1.乘2.整除2.给定一个操作序列,求最终结果.N <= 5*10^6.数据保证不会在最高位上进行进位或退位操作. 初步解法:由 ...
- 省常中模拟 Test3 Day1
tile 贪心 题意:给出一个矩形,用不同字母代表的正方形填充,要求相邻的方块字母不能相同,求字典序(将所有行拼接起来)最小的方案. 初步解法:一开始没怎么想,以为策略是每次填充一个尽量大的正方形.但 ...
- 省常中模拟 day2
第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...
- 省常中模拟 day1
第一题: 题目大意: 给出N个数的数列,如果相邻的两个数加起来是偶数,那么就可以把这两个数消掉,求最多能消掉多少数. 解题过程: 1.先自己手工模拟了几组数据,发现不管消除的顺序如何,最终剩下的是一定 ...
- 省常中模拟 Test4
prime 数论 题意:分别求 1*n.2*n.3*n.... n*n 关于模 p 的逆元.p 是质数,n < p. 初步解法:暴力枚举.因为 a 关于模 p 的逆元 b 满足 ab mod p ...
- 省常中模拟 Test1 Day1
临洮巨人 排序 题意:在字符串中找出 A.B.C 三个字母出现次数相同的区间个数. 初步的解法是前缀和,用 a(i), b(i), c(i) 表示在位置 i 之前(包括 i)各有 字母 A.B.C 多 ...
- CH Round #55 - Streaming #6 (NOIP模拟赛day2)
A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...
- 如何在C#中模拟C++的联合(Union)?[C#, C++] How To Simulate C++ Union In C#?
1 什么是联合? 联合(Union)是一种特殊的类,一个联合中的数据成员在内存中的存储是互相重叠的.每个数据成员都在相同的内存地址开始.分配给联合的存储区数量是“要包含它最大的数据成员”所需的内存数. ...
- Python中模拟enum枚举类型的5种方法分享
这篇文章主要介绍了Python中模拟enum枚举类型的5种方法分享,本文直接给出实现代码,需要的朋友可以参考下 以下几种方法来模拟enum:(感觉方法一简单实用) 复制代码代码如下: # way1 ...
随机推荐
- BZOJ1692: [Usaco2007 Dec]队列变换
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 594 Solved: 246[Submit][Sta ...
- UVA 11174 Stand in a Line (组合+除法的求模)
题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1, ...
- 【hadoop2.6.0】MapReduce原理
看了几篇博文,感觉还是云里雾里的. http://blog.csdn.net/opennaive/article/details/7514146 http://www.aboutyun.com/thr ...
- IP地址总结
1.网际协议IP : 网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一.与 IP 协议配套使用的还有四个协议: 地址解析协议 ARP (Address Resolution Protoco ...
- 恢复被win7覆盖的Ubuntu Grub
情景:本本装有Ubuntu 12.04 + Win7 32.重装Win7 64后,Ubuntu启动菜单被覆盖. 恢复的方法有多种,思路都一样.第一步,进入Linux环境:第二步.修改Grub使其重新覆 ...
- lintcode:1-10题
难度系数排序,容易题1-10题: Cosine Similarity new Fizz Buzz O(1)检测2的幂次 x的平方根 不同的路径 不同的路径 II 两个字符串是变位词 两个 ...
- Hibernate逍遥游记-第4章映射对象标识符-increment、identity、hilo、native、assigned、sequence、<meta>
1. package mypack; import java.lang.reflect.Constructor; import org.hibernate.*; import org.hibernat ...
- Java Project和Web Project 区别
java project是java工程,不包括JSP等前台页面的代码 大部分是CS结构的工程和一些jar包 web project是web工程,是BS结构的系统 web project部署到服务器上 ...
- VC程序查错之内存访问异常
作者:langouster 先来看下面这张图,相信很多程序员都见过类似. ---------------------------test1.exe - 应用程序错误------------------ ...
- Arcgis Engine最短路径分析
ArcEngine 最短路径分析(源码) using System; using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI ...