转自利用牛顿迭代法自己写平方根函数sqrt

给定一个正数a,不用库函数求其平方根。

设其平方根为x,则有x2=a,即x2-a=0。设函数f(x)= x2-a,则可得图示红色的函数曲线。在曲线上任取一点(x0,f(x0)),其中x0≠0那么曲线上该点的切线方程为

     (1-1)

求该切线与x轴的交点得

     (1-2)

因为1-2式中x0作为分母,所以在之前限定了一下初始值不要选0。那么得到的这个与x轴的交点其实是最终要求得的x的一次逼近,我们再以这个x基准继续迭代就可以求得更逼近的x,至于逼近到什么时候才算完,这个取决于你自己设定的精度。整个过程的迭代只需要几步就可以求得最终的结果。

代码如下:

  1. double NewtonMethod(double fToBeSqrted)
  2. {
  3. double x = 1.0;
  4. while(abs(x*x-fToBeSqrted) > 1e-5)
  5. {
  6. x = (x+fToBeSqrted/x)/2;
  7. }
  8. return x;
  9. }

当然,从图中可以看出,当你所取的初始值的横坐标在红色曲线与x轴交点右边,即比最终的结果大时,比如选初始值x=a,我们可以将while语句里面的abs(x*x-fToBeSqrted)直接换成fToBeSqrted -x*x,这样可以省去abs的运算。当然这不能确保效率的提升,因为初始值的选取直接影响了迭代的次数。

牛顿迭代法实现平方根函数sqrt的更多相关文章

  1. 【经典面试题】实现平方根函数sqrt

    本文将从一道经典的面试题说起:实现平方根函数,不得调用其它库函数. 函数原型声明例如以下: double Sqrt(double A); 二分法 二分法的概念 求,等价于求方程的非负根(解).求解方程 ...

  2. sql server 平方根函数SQRT(x)

    --SQRT(x)返回非负数x的二次方根 示例:select  SQRT(9), SQRT(36); 结果:3    6

  3. 用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)

    牛顿法(Newton’s method)又称为牛顿-拉弗森法(Newton-Raphson method),是一种近似求解实数方程式的方法.(注:Joseph Raphson在1690年出版的< ...

  4. 用二分法定义平方根函数(Bisection method Square Root Python)

    Python里面有内置(Built-in)的平方根函数:sqrt(),可以方便计算正数的平方根.那么,如果要自己定义一个sqrt函数,该怎么解决呢? 解决思路:  1. 大于等于1的正数n的方根,范围 ...

  5. 牛顿迭代法求n方根

    一.简单推导 二.使用 借助上述公式,理论上可以求任意次方根,假设要求a(假设非负)的n次方根,则有xn=a,令f(x)=xn-a,则只需求f(x)=0时x的值即可.由上述简单推导知,当f(x)=0时 ...

  6. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...

  7. sqrt()平方根计算函数的实现2——牛顿迭代法

    牛顿迭代法: 牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特 ...

  8. sqrt (x) 牛顿迭代法

    参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/articl ...

  9. 141. Sqrt(x)【牛顿迭代法求平方根 by java】

    Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...

随机推荐

  1. Dicom格式文件解析器

    转自:http://www.cnblogs.com/assassinx/archive/2013/01/09/dicomViewer.html Dicom全称是医学数字图像与通讯,这里讲的暂不涉及通讯 ...

  2. JS获取非行间样式及兼容问题

    获取非行间样式: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  3. node笔记——gulp修改静态文件的名字

    cmd小技巧: 1.换到下级或同等级目录 D: 2.换到上级目录 cd.. node 包管理器小技巧[以gulp为例] npm install --save-dev gulp gulp-concat ...

  4. String中重要方法与字段

    下列这段代码已全部包含了我要写的String类中重要的字段: //StringMisc.java// This program demonstrates the length, charAt and ...

  5. daily news新闻阅读客户端应用源码(兼容iPhone和iPad)

    daily news新闻阅读客户端应用源码(兼容iPhone和iPad),也是一款兼容性较好的应用,可以支iphone和ipad的阅读阅读器源码,设计风格和排列效果很不错,现在做新闻资讯客户端的朋友可 ...

  6. 躲避球游戏ios源码

    躲避球游戏源码,有限源码是一个基于cocos2d的躲避球游戏源码的,并且还引用了大家熟悉google广告的,进行推广,已经还有带game center等,游戏操作很简单,用手指按住物体,然后移动物体避 ...

  7. Reveal 配置与使用

    http://www.th7.cn/Program/IOS/201608/939231.shtml http://www.jianshu.com/p/abac941c2e8e 这个比较好.http:/ ...

  8. Spark菜鸟学习营Day2 分布式系统需求分析

    Spark菜鸟学习营Day2 分布式系统需求分析 本分析主要针对从原有代码向Spark的迁移.要注意的是Spark和传统开发有着截然不同的思考思路,所以我们需要首先对原有代码进行需求分析,形成改造思路 ...

  9. 【WPF学习日记——[DevExpress]】GridControl 行中使用按钮

    想到的办法都试了,只有这个能用,不一定是最好的,但却是自己能想到的,记录一下. <dxg:GridColumn Header="操作" Width="134&quo ...

  10. Windows Server 2008 HPC 版本介绍以及的Pack

    最近接触了下 这个比较少见的 Windows Server版本 Windows Server 2008 HPC 微软官方的介绍 http://www.microsoft.com/china/hpc/ ...